THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Сложный этический вопрос, стоит ли проводить обследование для выявления генетических патологий будущего малыша, каждая беременная решает для себя сама. В любом случае, важно обладать всей информацией о современных возможностях диагностики.

О том, какие сегодня существуют инвазивные и неинвазивные методы пренатальной диагностики, насколько они информативны и безопасны и в каких случаях применяются, рассказала Юлия ШАТОХА, кандидат медицинских наук, заведующая отделением пренатальной ультразвуковой диагностики Сети медицинских центров «УЗИ студия».

Зачем нужна пренатальная диагностика?

Предсказать возможные генетические патологии на протяжении беременности помогают различные методы. Прежде всего, это ультразвуковое исследование (скрининг), с помощью которого врач может заметить отклонения в развитии плода.

Второй этап пренатального скрининга при беременности - биохимический скрининг (анализ крови). Эти анализы, также известные как «двойной» и «тройной» тесты, сегодня проходит каждая беременная. Он позволяет с некоторой степенью точности спрогнозировать риск существования хромосомных аномалий плода.

Точный диагноз на основании такого анализа поставить невозможно, для этого требуются хромосомные исследования - более сложные и дорогостоящие.

Хромосомные исследования не обязательны для всех беременных, однако существуют и определенные показания:

    будущие родители - близкие родственники;

    будущая мать старше 35 лет;

    наличие в семье детей с хромосомной патологией;

    выкидыши или замершие беременности в прошлом;

    потенциально опасные для плода заболевания, перенесенные во время беременности;

    незадолго до зачатия кто-то из родителей подвергался ионизирующему излучению (рентген, лучевая терапия);

    риски, выявленные в результате УЗИ.

Мнение специалиста

Статистическая вероятность рождения ребенка с хромосомным нарушением - от 0,4 до 0,7%. Но нужно учитывать, что это риск в популяции в целом, для отдельных беременных он может быть чрезвычайно высок: базовый риск зависит от возраста, национальности и различных социальных параметров. Например, риск хромосомных аномалий у здоровой беременной с возрастом увеличивается. Кроме того есть, а есть индивидуальный риск, который определяется на основании данных биохимического и ультразвукового исследований.

«Двойной» и «тройной» тесты

Биохимические скрининги также известные как , а в просторечье именуемые и вовсе «анализ на синдром Дауна» или «анализ на уродства» , проводят в строго определённые сроки беременности.

Двойной тест

Двойной тест делают на 10-13 неделе беременности. В ходе этого исследования крови смотрят величину таких показателей как:

    свободный ХГЧ (хорионический гонадотропин),

    РАРРА (плазменный протеин А, ингибитор А).

Анализ следует делать только после проведения УЗИ, данные которого также используют при расчете рисков.

Специалисту потребуются следующие данные из заключения УЗИ: дата проведения УЗИ, копчико-теменной размер (КТР), бипариетальный размер (БПР), толщина воротникового пространства (ТВП).

Тройной тест

Второй - «тройной» (либо «четверной») тест беременным рекомендуют проходить на 16-18 неделе.

В ходе этого теста исследуют количество следующих показателей:

    альфа-фетопротеин (АФП);

    свободный эстриол;

    ингибин А (в случае четверного теста)

На основании анализа данных первого и второго биохимического скрининга и УЗИ, врачи рассчитывают вероятность таких хромосомных аномалий как:

    синдром Дауна;

    синдром Эдвардса;

    дефекты нервной трубки;

    синдром Патау;

    синдром Тернера;

    сндром Корнелии де Ланге;

    синдром Смита Лемли Опитца;

    триплоидия.

Мнение специалиста

Двойной или тройной тест это биохимические анализы, определяющие концентрацию в крови матери определенных веществ, характеризующих состояние плода.

Как рассчитывают риски хромосомных аномалий?

На результаты биохимического скрининга, помимо возможных хромосомных патологий, влияют очень многие факторы, в особенности возраст и вес. Чтобы определить статистически достоверные результаты, была создана база данных, в которой женщин разделили на группы по возрасту и массе тела и посчитали усредненные показатели «двойного» и «тройного» теста.

Средний результат для каждого гормона (MoM) и стал основой для определения границы нормы. Так, если полученный результат при делении на MoM составляет 0.5-2.5 единиц, то уровень гормона считается нормальным. Если меньше 0.5 MoM - низким, выше 2,5 - высоким.

Какая степень риска хромосомных аномалий считается высокой?

В итоговом заключении риск по каждой патологии указывается в виде дроби.

    Высоким считают риск 1:380 и выше.

    Средним - 1:1000 и ниже - это нормальный показатель.

    Очень низким считают риск 1:10000 и ниже.

Эта цифра означает, что из 10 тысяч беременных с таким уровнем, например, ХГЧ, только у одной родился ребенок с синдромом Дауна.

Мнение специалиста

Риск 1:100 и выше является показанием для проведения диагностики хромосомной патологии плода, но меру критичности данных результатов каждая женщина определяет сама для себя. Кому-то вероятность 1:1000 может показаться критичной.

Точность биохимического скрининга беременных

Многие беременные с опаской и скепсисом относятся к биохимическому скринингу. И это неудивительно - этот тест не дает никакой точной информации, на его основании можно лишь предположить вероятность существования хромосомных нарушений.

Кроме того информативность биохимического скрининга может снижаться, если:

    беременность произошла в результате ЭКО;

    у будущей матери сахарный диабет;

    беременность многоплодная;

    будущая мать имеет лишний вес или его недостаток

Мнение специалиста

Как изолированное исследование, двойной и тройной тесты имеют малое прогностическое значение, при учете данных УЗИ достоверность возрастает до 60-70%, и лишь при проведении генетических анализов результат будет точным на 99%. Речь идет только о хромосомных нарушениях. Если мы говорим о врожденной патологии, не связанной с дефектами хромосом (например, «заячья губа» или врожденные пороки сердца и головного мозга), то здесь достоверный результат даст профессиональная ультразвуковая диагностика.

Генетические анализы при подозрении наличия хромосомных аномалий

На основании заключения УЗИ или при неблагоприятных результатах биохимического скрининга генетик может предложить будущей маме пройти . В зависимости от срока это может быть биопсия хориона или плаценты, амниоцентез или кордоцентез. Такое исследование дает высокоточные результаты, но в 0,5% случаев такое вмешательство может стать причиной выкидыша.

Забор материала для генетического исследования проводят под местной анестезией и при УЗИ-контроле. Тонкой иглой врач делает прокол матки и осторожно берет генетический материал. В зависимости от срока беременности это могут быть частицы ворсин хориона или плаценты (биопсия хориона или плаценты), амниотическая жидкость (амниоцентез) или кровь из пуповиной вены (кордоцентез).

Полученный генетический материал оправляют на анализ, который позволит определить или исключить наличие многих хромосомных аномалий: синдром Дауна, синдром Патау, синдром Эвардса, синдром Тернера (точность - 99%) и синдром Клайнфельтера (точность - 98%).

Четыре года назад появилась альтернатива этому методу генетического исследования - неинвазивный пренатальный генетический тест. Это исследование не требует получения генетического материала - для него достаточно взять на анализ кровь из вены будущей мамы. В основе метода - анализ фрагментов ДНК плода, которые в процессе обновлении его клеток попадают в кровоток беременной.

Делать этот тест можно начиная с 10 недели беременности. Важно понимать, что этот тест пока мало распространен в России, его делают очень немногие клиники, и далеко не все врачи считаются с его результатами. Поэтому нужно быть готовыми к тому, что врач может настоятельно рекомендовать инвазивное обследование в случае высоких рисков по УЗИ или биохимическому скринингу. Как бы там ни было - решение всегда остается за будущими родителями.

В нашем городе неинвазивные пренатальные генетические тесты делают клиники:

    «Авиценна». Тест Panorama. Неинвазивная пренатальная генетическая диагностика анеуплоидий 42 т.р. Неинвазивная пренатальная генетическая диагностика анеуплоидий и микроделеций - 52 т.р

    «Алмита». Тест Panorama. Стоимость от 40 до 54 т.р. в зависимости от полноты исследования.

    «УЗИ-студия». Тест Prenetix. Стоимость 38 т.р.

Мнение специалиста

Только хромосомный анализ может подтвердить или исключить хромосомную патологию. УЗИ и биохимический скрининг позволяют лишь рассчитать величину риска. Анализ на такие патологии как синдром Дауна, Эдвардса и Патау можно проводить с 10 недель беременности. Это делается посредством получения ДНК плода непосредственно из структур плодного яйца (прямой инвазивный метод). Риск, возникающий при инвазивном вмешательстве, при наличии прямых показаний гарантированно ниже опасности возникновения хромосомной патологии (примерно 0.2-0.5% по данным разных авторов).

Кроме того, сегодня любая беременная по собственному желанию может пройти обследование на наличие основных генетических заболеваний у плода прямым неинвазивным методом. Для этого достаточно лишь сдать кровь из вены. Метод является абсолютно безопасным для плода, но достаточно дорог, что и ограничивает его повсеместное применение.

Непростое решение

Вопрос о том нужна ли диагностика генетических заболеваний во время беременности и что делать с полученной в результате исследований информацией каждая женщина решает для себя сама. Важно понимать, что врачи не имеют права оказывать на беременную давления в этом вопросе.

Мнение специалиста

При сроке беременности до 12 недель женщина может сама определиться с вопросом о необходимости прерывания беременности в случае обнаружения какой-либо патологии плода. В более поздние сроки для этого нужны веские основания: патологические состояния, несовместимые с жизнью плода и заболевания, которые впоследствии приведут к глубокой инвалидизации или смерти новорожденного. В каждом конкретном случае этот вопрос решается с учетом срока беременности и прогнозом для жизни и здоровья плода и самой беременной.

Существуют два основания, по которым врачи могут рекомендовать прервать беременность:

    выявлены пороки развития у плода, не совместимые с жизнью или с прогнозом глубокой инвалидизации ребенка;

    состояние матери, при котором пролонгация беременности может вызвать неблагоприятное течение заболевания с угрозой для жизни матери.

Пренатальная диагностика - будь то биохимическое, ультразвуковое или генетическое исследование, не является обязательной. Некоторые родители хотят обладать максимально полной информацией, другие предпочитает ограничиваться минимальным набором обследований, доверяя природе. И каждый выбор достоин уважения.

Хромосомной патологией является нарушение в структуре, строении хромосом, изменение количества хромосом. Хромосомной патологией является ряд наследственных заболеваний, обусловленных различными геномными мутациями, структурными изменениями хромосом.

Исследование хромосомной патологии

Хромосомной патологией является нарушение в структуре и строении хромосом, которое приводит к развитию пороков, наследственным заболеваниям. Исследование хромосомной патологии предлагают всем, кто находится в группе риска:

  • Женщинам, которые планируют беременность в возрасте старше 35 лет.
  • Женщинам, у которых было самопроизвольное прерывание беременности.
  • Женщинам, у которых в анамнезе мертворожденные дети.
  • Супругам, у которых есть близкие родственники с наследственными заболеваниями.
  • Другие причины.

Хромосомные патологии при беременности

Первую проверку на наличие хромосомной патологии беременные женщины проходят с 9 по 13 неделю. Второй этап перинатального биохимического скрининга проходят на сроке беременности от 16 до 18 недели. Хромосомные патологии при беременности обнаруживают не часто, но они могут привести к замершей беременности, преждевременным родам, самопроизвольному выкидышу. Если вовремя выявлена хромосомная патология при беременности, женщина имеет право решать, как ей поступить дальше – рожать больного ребенка или прервать беременность.

Анализ на хромосомные патологии плода

Анализ на хромосомные патологии плода – это исследование биохимических маркеров, которое проводится в первом триместре беременности. У беременной женщины выделяются плацентой и плодом вещества, которые поступают в кровь матери. Анализ на хромосомные патологии плода позволяет определить концентрацию этих веществ в крови матери. Кровь на хромосомную патологию берется из вены.

Хромосомные исследования плода

Хромосомные исследования плода – это биопсия хориона и амниоцентоз. Хромосомные исследования плода этого вида проводятся, если анализ на хромосомные патологии плода показал отклонения. Амниоцентоз – это пункция амниотической оболочки, во время которой проводится забор околоплодных вод для лабораторного исследования. Биопсия хориона – это получение образца ткани плаценты (ворсинок хориона). Эти хромосомные исследования плода помогают диагностировать многие хромосомные патологии.

Дети с хромосомной патологией

Дети с хромосомной патологией имеют определенные внешние признаки. Синдром Дауна характеризуется косыми глазными щелями, плоской переносицей, плоским профилем лица. Плоский профиль лица встречается почти у 90% детей с синдромом Дауна, плоская переносица встречается у 65% больных детей. Дети с хромосомной патологией, синдромом Дауна, имеют отличительные черты – открытый рот, слегка высунутый язык, эпикант, характерный низкий рост волос на затылке, также на затылке отмечается излишняя кожа. Эти признаки патологии встречаются в 80% случаев синдрома Дауна, в 60% случаев отмечаются диспластические уши, короткие пальцы, узкое нёбо. У ребенка с синдромом Дауна изменяется форма зубов – они приобретают вид острых клыков, изменяется внешний вид языка – язык напоминает географический рельеф, ему присваивают название – «географический язык». Синдрому Дауна сопутствуют многие нарушения развития - умственная отсталость, мышечная гипотония, которая встречается в 80% случаев патологии. Патология развития сердца при синдроме Дауна выявляется в среднем у 50% больных детей. Дети с хромосомной патологией синдром Дауна имеют сниженный иммунитет.

Хромосомная патология синдром Дауна имеет несколько форм:

  • Простая форма - хромосомная патология синдром Дауна, хромосома 47.ХХ. 21+. Хромосомная патология простой формы встречается часто - в 95% случаев синдрома Дауна.
  • Мозаичная форма - хромосомная патология синдром Дауна, хромосома 47. ХY.21+/46. ХY, встречается редко, в 1% случаев патологии.
  • Транслокационная форма - хромосомная патология синдром Дауна, хромосома 47.ХХ.t 21|15; а также 47. XY/t 21/21, встречается примерно в 4% случаев этой патологии. В случае Робертсоновской транслокации возможно рождение у носителей генетической транслокации,ребенка с синдромом Дауна:
  • 45.ХХ.t 21/15 (мать) – от 10 до 15%.
  • 45.ХY.t 21/15 (отец) – от 5 до 7%.
  • 45.ХY.t 21/21 (любой из родителей) – 100%.

Дети с синдромом Дауна, должны проходить стимуляцию центральной нервной системы – специфическую и неспецифическую, хирургическое лечение, если оно показано. Дети с синдромом Дауна, как правило, очень послушны и исполнительны. При правильном воспитании они могут ухаживать за собой, ухаживать за домашними животными, хорошо читать, петь, полностью повторять действия взрослого во время выполнения работ. Дети с хромосомной патологией должны проходить социальную реабилитацию для адаптации в обществе, специальное обучение, при достижении определенного возраста - посильное трудоустройство.

Хромосомная патология - синдром дисомии по Y хромосоме

Синдром дисомии по Y хромосоме описан сравнительно недавно - в 1961 году. Синдром дисомии по Y хромосоме – это кариотип 47. ХYY, встречается редко – один новорожденный малыш на 1000. Дети с дисомией по Y хромосоме не отличаются от своих сверстников, ростом чаще всего выше среднего. У взрослых мужчин рост в среднем около 186 см. Практически не встречаются отличия со здоровыми людьми в половом, умственном и физическом развитии, у большинства мужчин соответствует норме гормональный статус и плодовитость. В 35% случаев патологии встречаются характерные для заболевания признаки: выступающие надбровные дуги и переносица, грубые черты лица, большая нижняя челюсть, крупные ушные раковины, зубы имеют дефекты покрывающей их эмали, очень часто встречается деформация коленных и локтевых суставов. Заболевание характеризуется повышенной внушаемостью больного, подражательностью, дети с таким синдромом быстро схватывают отрицательные формы поведения сверстников. Для таких больных характерно агрессивное поведение, импульсивность и взрывчатость.

Хромосомная патология – синдром Патау

Дети с хромосомной патологией синдром Патау имеют множественные пороки развития. Синдром Патау – 47.ХХ.13+ и 46. ХY. t 13/15 встречается редко, один ребенок на 6000 детей в среднем. У всех детей с этой патологией множественные пороки развития. У детей, которые выжили, в 100% случаев умственная отсталость, черепно-лицевые дизморфии – узкие глаза, низко расположенные, неправильной формы уши, низкий тяжелый лоб, расщелины губы, нёба.

Хромосомная патология – синдром Эдвардса

Риск хромосомной патологии плода синдрома Эдвардса - низкий, один ребенок на 6000 детей в среднем. Патология сопровождается множественными пороками развития у всех больных детей. У больных пороки развития сердца, головного мозга, легких, кишечника, черепа и скелета. Мальчики умирают после рождения, девочки большей частью доживают до одного месяца, очень маленький процент девочек может дожить до одного года.

Хромосомные патологии – Эдвардса и Патау не наследуются из-за того, что больные дети не доживают до взрослого возраста из-за многочисленных пороков развития.

Хромосомная патология – синдром Шерешевского-Тернера

Риск хромосомной патологии плода - синдрома Шерешевского-Тернера составляет 1 к 3500. Кариотип заболевания – 45.Х. Характеризуется патология антимонголоидным разрезом глаз, в 65% случаев встречается лимфатический отек стоп, голеней, кистей рук у новорожденного младенца, которые могут проявляться в течении первых месяцев жизни малыша. Патология имеет выраженные признаки – короткая шея, которая встречается в половине случаев патологии, крыловидные складки (шея сфинкса) от затылка до надплечья, встречаются в 65% случаев заболевания. У всех детей с синдромом Шерешевского-Тернера маленький рост, бочкообразная грудь с широко расставленными сосками встречается в 55% случаев. При кариотипе 45.Х у всех больных детей диагностируется половой инфантилизм. Патология характеризуется недоразвитием молочных желез, аменореей, эмоциональной бедностью. Патологию лечат стимуляцией роста ребенка, формированием менструального цикла с помощью гормональной терапии, по показаниям применяют хирургическое лечение, психотерапевтическое лечение.

Хромосомная патология – синдром Клайнфельтера

Риск хромосомной патологии плода – синдрома Клайнфельтера, составляет 1 к 600 в среднем. Это мальчики, которые имеют в дальнейшем высокий рост, телосложение по женскому типу, гинекомастию в 100% случаев заболевания. Кариотип патологии – 47. ХХY, 48. ХХХY; 47. ХYY; 48. ХYYY; 49. ХХХYY; 49. ХХХХY.

Люди с такой патологией подвержены внушаемости, эмоциональной лабильности. У них длинные руки, пальцы рук, в 100% случаев микроорхидизм, в период полового созревания появляются яркие признаки патологии – практически отсутствует оволосение в области половых органов, гиалиноз семенных канатиков и дегенерация эпителия, бесплодие. Больные апатичны, безынициативны, склонны к депрессивным психозам, к алкоголизму, асоциальному поведению в обществе. В детстве больные астеничны, взрослые страдают повышенной массой тела.

Больные с синдромом Клайнфельтера и полисомией 47. ХYY, могут выглядеть абсолютно здоровыми людьми, большая часть больных имеет умственное развитие близкое к норме или слегка сниженное. Некоторые больные отличаются агрессивным поведением, имеют хорошее телосложение, развитую мускулатуру, у них высокий рост. Отмечено, что среди преступников-рецидивистов часто встречаются больные с полисомией такого типа.

Начните свой путь к счастью - прямо сейчас!

УЗИ плода на выявление генетических патологий - это выявление трисомий (дополнительной третьей хромосомы в генетическом наборе плода), приводящих к рождению малыша с серьёзными наследственными заболеваниями и физическими уродствами. Обнаружить пороки плода на УЗИ можно уже на первых этапах развития беременности.

Консультация врача по результатам анализов или УЗИ - 500 руб. (по желанию пациента)

Зачем нужно делать УЗИ для выявления пороков развития плода

На 1000 новорождённых приходится 5-7 младенцев с аномалиями половых (наследственных) или соматических (ненаследственных) клеток. Чаще всего эмбрион с хромосомным нарушением погибает на начальных сроках беременности, когда у женщины возникает . С помощью УЗИ можно увидеть различные аномалии и патологии, поэтому ультразвуковое исследование на выявление пороков развития обязательно для каждой беременной женщины.

Когда и почему возникают генетические патологии плода: риски по возрастам

Аномалии развития плода закладываются уже в момент оплодотворения сперматозоидом яйцеклетки. Например, такая патология, как триплоидия (наличие трех хромосомом в ряду цепочки, а не двух, как положено), возникает в случае проникновения в яйцеклетку двух сперматозоидов, каждый из которых оставляет по одной хромосоме. Естественно, с таким набором живой организм не может выжить, поэтому на определённом этапе происходит выкидыш или .

Самопроизвольные выкидыши случаются в 50% аномальных оплодотворений. Так природа защищает человечество от полного вырождения.

В целом хромосомные патологии разделяются на 4 группы:

  1. Гаметопатия. Патология имеется ещё до зачатия в самом сперматозоиде или яйцеклетке, т.е. это генетическое заболевание - врожденная патология.
  2. Бластопатия . Аномалии возникают в первую неделю развития зиготы.
  3. Эмбриопатия . Повреждения эмбрион получает в период от 14 до 75 дней после зачатия.
  4. Фетопатия . Заключается в формировании патологии развития плода начиная с 75 дня после оплодотворения.

Никто не застрахован от рождения малыша с генетическими отклонениями. Если раньше к группе риска относили матерей старше 35 лет, диабетиков, женщин, имеющих хронические заболевания (почечная недостаточность, проблемы с щитовидкой), то в наши дни больные дети рождаются у молодых матерей в возрасте от 20 до 30 лет.

Данные статистики наводит на мрачные мысли. Так, риск рождения малыша с хромосомными аномалиями у 20-летних женщин составляет 1:1667, а у 35-летних уже 1:192. А на деле это означает, что в 99,5% случаев ребёнок у тридцатипятилетней матери родится здоровым.

Какие генетические заболевания плода можно увидеть на УЗИ, когда проходить

Нельзя говорить, что УЗИ показывает 100% всех отклонений, но с большой долей вероятности женщина будет знать о состоянии здоровья своего будущего малыша. За всю беременность женщина проходит минимум три УЗИ исследования: в 1, 2 и 3 семестрах. Их называют .

В 1 семестре на сроке от 10 до 14 недель (до 10 недели УЗИ неинформативно) беременная проходит исследование, именуемое скринингом. Он состоит из биохимического анализа крови и УЗИ исследования эмбриона. Результатом скрининга является выявление следующих патологий:

  • синдром Дауна
  • синдром Патау
  • синдром Эдвардса
  • синдром Шерешевского-Тернера
  • синдром Карнелии де Ланге
  • синдром Смита-Лемли-Опитца
  • синдром Прадера-Вилли
  • синдром Энжельмена
  • синдром Лангера-Гидеона
  • синдром Миллера-Диккера
  • аномалия ДиДжорджи
  • синдром Уильямса
  • опухоль Вильмса
  • триплоидия (когда хромосом не 46 по2 в каждой паре, а 69, т.е. по три, а не по две)
  • дефект нервной трубки

На 20-24 неделе делается ещё одно УЗИ. Среди генетических заболеваний плода, видимых на ультразвуковом исследовании во 2 семестре, можно отметить:

  • анэнцефалия (отсутствие головного мозга, точность диагностики 100%)
  • патология брюшной стенки (86%)
  • патология развития конечностей (90%)
  • грыжа спинного мозга (87%)
  • патология развития или отсутствие почек (85%)
  • наличие отверстия в диафрагме, которая разделяет брюшную полость и грудную клетку (85%)
  • (100%)
  • аномалии сердца (48%)

На 3 семестре проводится допплерометрия – УЗИ исследование с определением сосудистой системы плода, плаценты и матери. Начиная с 23 недели беременности проверяются артерия пуповины, маточная артерия и средняя мозговая артерия. Исследуется систолический (при сокращении сердечной мышцы) и диастолический (при расслаблении сердечной мышцы) кровоток. У малыша с хромосомными нарушениями кровоток атипичен.

Также в 3 семестре обязательно делают - измерение размеров с целью выявления аномалий развития.


Разновидности УЗИ исследований

Ультразвуковая диагностика представляет широкий спектр исследований. Существует несколько видов УЗИ, которые с предельной точностью определяют внутриутробные пороки развития малыша.

Стандартное УЗИ . Оно обычно совмещено с биохимическим анализом крови. Оно проводиться не раньше 10 недель беременности. В первую очередь у плода выявляют толщину воротниковой зоны, которая не должна превышать 3 мм, а также визуализацию носовой кости. У малыша с синдромом Дауна воротниковая зона толще нормы, а носовые кости не развиты. Также на увеличение толщины влияют следующие факторы:

  • порок сердца
  • застой крови в шейных венах
  • нарушение лимфодренажа
  • анемия
  • внутриутробные инфекции

Допплерометрия - э то необычное УЗИ исследование, которое оценивает кровоток плода. Разница между посылаемым и отражаемым сигналом указывает на норму или патологию цепочки “плод-плацента-мать”.

  1. позволяет увидеть цветное изображение малыша, разглядеть конечности, отсутствие сросшихся пальчиков, недоразвитых стоп и пр. Точность диагностики воротникового пространства увеличивается на 30%. Врач может точно сказать, имеются ли патологии развития нервной трубки.
  2. по принципу работы не отличается от более простых вариантов, но обладает массой преимуществ. Врач видит трёхмерное изображение сердца, вид плода с разных ракурсов. Именно 4D диагностика окончательно расставляет все точки над “i”, есть ли хромосомные аномалии или их нет. Со 100% точностью можно утверждать, имеются ли пороки развития нервной системы, скелетная дисплазия, заячья губа или волчья пасть.

Как выглядит УЗИ общих патологий плода: фото и расшифровка результатов УЗИ

Генетические патологии бывают как специфические (синдром Дауна, опухоль Вильмса), так и общие, когда внутренний орган развивается неправильно. Для выявления общих аномалий существует анатомическое исследование плода. Оно проводится на 2 семестре начиная с 20 недели беременности. В этот период можно увидеть личико малыша и определить его пол.

При анатомическом УЗИ все органы плода выводятся на экран в разрезе, и на снимке кости будут иметь белый цвет, а мягкие ткани различные оттенки серого. Специалисту хорошо видно строение головного мозга, он также в состоянии увидеть аномалии в развитии. Становится заметной расщепление верхнего нёба, именуемая заячьей губой.

Продольная и поперечная проекция позвоночника подтверждает или опровергает правильное расположение костей, можно убедиться в целостности брюшной стенки. Отсутствие патологий сердца подтверждают одинаковые размеры предсердий и желудочков. О нормальной работе желудка говорит его наполненность околоплодными водами. Почки должны располагаться на своём месте, а моча из них свободно поступать в мочевой пузырь. Врач чётко видит конечности плода, кроме пальчиков ног.

Генетические патологии плода: как они выглядят на УЗИ и прогноз патологии

Патология

Как и когда выявляют

В чём суть патологии

Характерные черты

Психическое и интеллектуальное развитие

Синдром Дауна

Проводится биопсия хориона, увеличенное воротниковое пространство у плода, недоразвитость костей носа, увеличенный

мочевой пузырь, тахикардия у плода

Хромосомы 21-й пары вместо положенных 2 представлены 3 в цепочке

Раскосый монголоидный разрез глаз независимо от расы ребёнка, неразвитая переносица, неглубоко посаженные глаза, полукруглое плоское ухо, укороченный череп, плоский затылок, укороченный нос

Задержка интеллектуального развития, маленький словарный запас, отсутствует абстрактное мышление, нет концентрации внимания, гиперактивность

ПРОГНОЗ

Доживают до 60 лет, в редкий случаях при условии постоянных занятий с ребёнком возможна его социализация. Такой ребёнок нуждается в постоянном присмотре

Синдром Патау

Маленькая голова на 12 неделе на УЗИ, несимметричные полушарии, лишние пальцы

В 13-й хромосоме присутствует трисомия

Дети рождаются с микроцефалией (неразвитость головного мозга), низкий лоб, скошенные глазные щели, расщелины губы и нёба, помутнение роговицы, дефекты сердца, увеличены почки, аномальные половые органы

Глубокая умственная отсталость, отсутствие мышления и речи

ПРОГНОЗ

95% детей с синдромом Патау умирает до года, остальные редко доживают до 3-5 лет

Синдром Эдвардса

Биопсия хориона, внутриутробное взятие крови из пуповины, на УЗИ видна микроцефалия

В 18-й хромосом есть трисомия

Рождаются в основном девочки (3/4), а плод мужского пола погибает ещё в утробе. Низкий скошенный лоб, маленький рот, недоразвитость глазного яблока, расщелины верхней губы и нёба, узкий слуховой проход, врождённые вывихи, косолапость, тяжёлые аномалии сердца и ЖКТ, недоразвитость мозга

Дети страдают олигофренией (органическим поражением головного мозга), умственной отсталостью, имбецильностью (средней умственной отсталостью), идиотией (отсутствием речи и умственной деятельности)

ПРОГНОЗ

В течение первого года жизни умирает 90% больных детей, до 10 лет – менее 1%

Синдром Шерешевского-Тёрнера

Рентген костных структур плода, МРТ миокарда

Аномалия, встречающаяся в Х-хромосоме

Встречается чаще у девочек. Укороченная шея со складками, отёчны кисти и ступни, тугоухость. Отвисшая нижняя губа, низкая линия роста волос, недоразвитая нижняя челюсть. Рост во взрослом возрасте не превышает 145 см. Дисплазия суставов. Аномальное развитие зубов. Половой инфантилизм (нет фолликул в яичниках), недоразвитость молочных желез

Страдает речь, внимание. Интеллектуальные способности не нарушены

ПРОГНОЗ

Лечение проводится анаболическими стероидами, девушкам с 14 лет назначают женские гормональные препараты. В некоторых случаях удаётся победить недуг, и женщина может забеременеть методом ЭКО. Большинство больных остаются бесплодными

Полисомия по Х-хромосоме

Скрининг на 12 неделе беременности, биопсия хориона, анализ амниотической жидкости. Настораживает увеличение воротниковой зоны

Вместо двух Х-хромосом встречается три и более

Встречается у девочек и редко у мальчиков. Характерен половой инфантилизм (не развиваются вторичные половые признаки), высокий рост, искривление позвоночника, гиперпигментация кожи

Антисоциальное поведение, агрессия, умственная отсталость у мужчин.

ПРОГНОЗ

При постоянных занятиях с педагогами и вовлечении в трудовую деятельность возможна социализация ребёнка

Полисомия по Y-хромосоме

Вместо ХY-хромосом есть лишняя Y-хромосома

Встречается у мальчиков. Вырастают высокого роста от 186 см, тяжёлая массивная нижняя челюсть, выпуклые надбровные дуги, узкие плечи, широкий таз, сутулость, жир на животе

Умственная отсталость, агрессия, эмоциональная неустойчивость

ПРОГНОЗ

С ребёнком нужно заниматься, направлять его на мирную деятельность, привлечь к спорту

Синдром Карнелии де Ланге

При анализе крови беременной женщины в сыворотке не обнаружено протеина-А плазмы (РАРР-А), которого обычно много

мутациями в гене NIPBL или SMC1A

Тонкие сросшиеся брови, укороченный череп, высокое нёбо, аномально прорезавшиеся зубы, недоразвитые конечности, мраморная кожа, врождённые пороки внутренних органов, отставание в росте

Глубокая умственная отсталость,

ПРОГНОЗ

Средняя продолжительность жизни 12-13 лет

Синдром Смита-Лемли-Опитца

УЗИ показывает аномалии черепа у плода, не просматриваются рёберные кости

мутация в гене DHCR7, отвечающий за выработку холестерина

Узкий лоб, опущены веки, косоглазие, деформация черепа, короткий нос, низко расположенные уши, недоразвитые челюсти, аномалии половых органов, сращение пальцев

Повышенная возбудимость, агрессия, понижение мышечного тонуса, нарушения сна, отставание в умственном развитии, аутизм

ПРОГНОЗ

Терапия с использованием пищевого холестерина

Синдром Прадера-Вилли

Отмечается низкая подвижность плода, неправильное положение,

В 15-й хромосоме отсутствует отцовская часть хромосомы

Ожирение при низком росте, плохая координация, слабый мышечный тонус, косоглазие, густая слюна, плохие зубы, бесплодие

Задержка психического развития, речевое отставание, отсутствие навыков общения, слабая мелкая моторика. Половина больных имеет средний уровень интеллекта, умеют читать

ПРОГНОЗ

При постоянных занятиях ребёнок может научиться читать, считать,запоминает людей. Следует вести борьбу с перееданием

Синдром Ангельмана

Начиная с 12-й недели наблюдается отставание развития плода в росте и массе

Отсутствуют или мутирует ген UBE3A в 15-й хромосоме

Частый необоснованный смех, мелкий тремор, много ненужных движений, широкий рот, язык вываливается наружу, ходьба на абсолютно прямых ногах

“Синдром счастливой марионетки”: ребёнок часто и беспричинно смеётся. Задержка психического развития, гиперактивность, нарушение координации движения, хаотичное махание руками

ПРОГНОЗ

Проводится противоэпилептическая терапия, гипотонус мышц снижается массажем, в лучшем случае ребёнок научится невербальным навыкам общения и самообслуживания

Синдром Лангера-Гидеона

На 4D УЗИ заметна челюстно-лицевая аномалия

трихоринофаланговый синдром, заключающийся в нарушении 8-й хромосомы

Длинный нос грушевидной формы, недоразвитость нижней челюсти, очень оттопыренные уши, неравномерность конечностей, искривление позвоночника

Задержка психического развития, умственная отсталость различной степени, отсутствие речи

ПРОГНОЗ

Плохо поддаётся коррекции, невысокая продолжительность жизни

Синдром Миллера-Диккера

На УЗИ заметно аномальное строение черепа, лицевые диспропорции

Патология в 17-й хромосоме, вызывающая разглаживание мозговых извилин. Вызывается интоксикацией плода альдегидами при злоупотреблении матерью алкоголя

Дизморфия (алкогольный синдром), пороки сердца, почек, судороги

Лиссэнцефалия (гладкость извилин больших полушарий), недоразвитость головного мозга, умственная отсталость

ПРОГНОЗ

Выживаемость до 2 лет. Дети могут научиться только улыбаться и смотреть в глаза

Аномалия ДиДжорджи

В некоторых случаях на УЗИ выявляются различные пороки органов у малыша, особенно сердца (тетрада Фалло)

Заболевание иммунной системы, нарушение участка 22-й хромосомы

Гипоплазия тимуса (недоразвитость органа, отвечающего за выработку иммунных клеток), деформация лица и черепа, порок сердца. Отсутствуют паращитовидные железы, отвечающие за обмен кальция и фосфора

Атрофия коры головного мозга и мозжечка, задержка умственного развития, сложности с моторикой и речью

ПРОГНОЗ

Лечение иммуностимуляторами,пересадка тимус, кальциевосполняемая терапия. Дети редко доживают до 10 лет, умирают от последствий иммунодефицита

Синдром Уильямса

На УЗИ видны диспропорции в развитии скелета, эластичность суставов

Генетическое заболевание, вызванное отсутствием звена в 7-й хромосоме

Нарушен синтез белка эластина, у детей типично “лицо Эльфа”: припухшие веки, низко расположенные глаза, острый подбородок, короткий нос, широкий лоб

Повышенная чувствительность к звуку, импульсивность, навязчивая общительность, эмоциональная неустойчивость, тревожность, экспрессивная речь

ПРОГНОЗ

Речь хорошо развита, даже лучше, чем у здоровых сверстников. Выраженные музыкальные способности (абсолютный слух, музыкальная память). Сложности с решением математических задач

Синдром Беквита-Видеманна

На УЗИ заметны аномально непропорциональные конечности, превышение массы тела, патология почек

Генетическое заболевание, вызванное отсутствием звена в 11-й хромосоме

Бурный рост в раннем возрасте, аномально большие внутренние органы, склонность к раковым опухолям. У ребёнка пупочная грыжа, аномально большой язык, микроцефалия (недоразвитость мозга).

Эмоциональное и психическое развитие в некоторых случаях не отстаёт от нормы. Иногда встречается выраженная умственная отсталость

ПРОГНОЗ

Продолжительность жизни как у обычных людей, но существует склонность к раковым опухолям

Синдром Тричера Коллинза

На УЗИ видны ярко выраженная асимметрия черт лица

Генетическая мутация в 5-й хромосоме, вызывающая нарушение костных структур

У ребёнка практически нет лица, ярко выраженное физическое уродство

Абсолютно нормальное психо-эмоциональное развитие

ПРОГНОЗ

Проводятся оперативные вмешательства с целью устранения уродств

Причины патологий плода: что влияет на рождение детей с генетическими отклонениями

К фактором, способствующим рождению детей с генетическими аномалиями, относятся:

  1. Генетическая предрасположенность . Гены - это информация, закладываемая от обоих родителей. Определяются такие показатели, как рост, цвет глаз и волос. Точно также закладываются и различные отклонения, если у обоих или у одного из родителей имеется повреждённый ген. Вот почему запрещается вступать в брак близким родственникам. Ведь тогда возрастает вероятность вынашивания плода с генетической патологией. С партнером, имеющим противоположный генетический набор, больше шансов родить здорового малыша.
  2. Возраст родителей . К группе риска относятся мамы старше 35 лет и папы старше 40 лет. С возрастом снижается иммунитет, возникают хронические заболевания, и иммунная система женщины попросту “не заметит” генетически повреждённого сперматозоида. Произойдёт зачатие, и, если у молодой женщины организм сам отторгнет неполноценный плод, у возрастной мамы беременность будет проходить более спокойно.
  3. Вредные привычки мамы . Практически 90% патологических беременностей проходит при маловодии. У курящей женщины плод страдает от гипоксии, продукты распада альдегидов (спиртов) на начальных сроках беременности приводят к мутациям и отклонениям. У алкоголичек в 46% случаев дети рождаются с генетическими патологиями. Спирты также “ломают” генетические цепочки и у отцов, которые любят выпить.
  4. Инфекции . Особенно опасны такие заболевания, как грипп, краснуха, ветрянка. Наиболее уязвимым плод является до 18-й недели, пока не сформируется околоплодный пузырь. В некоторых случаях женщине предлагают сделать .
  5. Приём медикаментов . Даже обычный ромашковый чай для беременной женщины является токсичным. Любой приём лекарств должен сопровождаться консультацией врача.
  6. Эмоциональные потрясения . Они вызывают гибель нервных клеток, что неизменно сказывается на развитии плода.
  7. Плохая экология и смена климата . Забеременев во время отдыха на Таиланде, есть вероятность вместе с беременностью привезти опасную инфекцию, которая в родных краях начнет медленно развиваться, сказываясь на здоровье малыша.

Как предотвратить пороки плода и где сделать УЗИ плода в СПБ

Предотвратить большинство проблем с вынашиванием и патологиями плода, можно заранее планируя беременность. оба партнера сдают анализы, четко показывающие вероятность генетических отклонений. Также проводится спектр тестов на инфекции, способные вызвать уродства у малыша ( ) и другие исследования.

Приглашаем пройти УЗИ на патологии плода в Санкт-Петербурге в . У нас установлен новейший УЗИ аппарат с доплером. Обследование проводится в 3-Д и 4-Д фоматах. На руки выдается диск с записью.

Организм человека является сложной системой, деятельность которой регулируется на различных уровнях. При этом определенные вещества должны участвовать в конкретных биохимических процессах, чтобы все клетки, органы и целые системы могли правильно функционировать. А для этого требуется заложить правильное основание. Подобно тому, как многоэтажный дом не выстоит без соответствующим образом подготовленного фундамента, «здание» человеческого тела требует корректной передачи наследственного материала. Именно заложенный в нем генетический код управляет развитием зародыша, позволяет сформироваться всем взаимодействиям и обуславливает нормальное существование человека.

Однако в некоторых случаях в наследственной информации появляются ошибки. Они могут возникать на уровне отдельных генов или же касаться их крупных объединений. Подобные изменения называются генными мутациями. В отдельных ситуациях проблема относится к целым хромосомам, то есть к структурным единицам клетки. Соответственно, их называют хромосомными мутациями. Наследственные болезни, развивающиеся вследствие нарушений хромосомного набора или строения хромосом, получили название хромосомных.

В норме каждая клетка организма содержит одно и то же количество хромосом, объединенных в пары с одинаковыми генами. У человека полный набор состоит из 23 пар, и только в половых клетках вместо 46 хромосом находится половинное число. Это необходимо для того, чтобы в процессе оплодотворения при слиянии сперматозоида и яйцеклетки получилась полноценная комбинация со всеми необходимыми генами. Гены распределены по хромосомам не случайно, а в строго определенном порядке. При этом линейная последовательность сохраняется одинаковой для всех людей.

Однако в процессе образования половых клеток могут произойти различные «ошибки». В результате мутаций изменяется количество хромосом или их структура. По этой причине после оплодотворения в яйцеклетке может оказаться избыточное или, напротив, недостаточное количество хромосомного материала. Из-за дисбаланса процесс развития зародыша нарушается, что может привести к самопроизвольному прерыванию беременности, рождению мертвого ребенка либо развитию наследственного хромосомного заболевания.

Этиология хромосомных заболеваний

К этиологическим факторам хромосомных патологий относятся все разновидности хромосомных мутаций. Кроме того, некоторые геномные мутации также способны оказывать подобное действие.

У человека встречаются делеции, дупликации, транслокации и инверсии, то есть все типы мутаций. При делеции и дупликации генетическая информация оказывается в недостаточном и избыточном количестве соответственно. Поскольку современными методами можно выявить отсутствие даже небольшой части генетического материала (на уровне гена), то провести четкую границу между генными и хромосомными заболеваниями практически невозможно.

Транслокации представляют собой обмен генетическим материалом, который происходит между отдельными хромосомами. Иными словами, происходит перемещение участка генетической последовательности на негомологичную хромосому. Среди транслокаций выделяют две важные группы – реципрокные и Робертсоновские.

Транслокации реципрокного характера без потери задействованных участков называются сбалансированными. Они, как и инверсии, не вызывают потери генной информации, поэтому не приводят к паталогическим эффектам. Тем не менее, при дальнейшем участии таких хромосом в процессе кроссинговера и редукции могут образовываться гаметы с несбалансированными наборами, обладающие недостаточным набором генов. Их участие в процессе оплодотворения приводит к тому, что у потомства развиваются те или иные наследственные синдромы.

Для Робертсоновских транслокаций характерно участие двух акроцентрических хромосом. В ходе процесса короткие плечи утрачиваются, а длинные сохраняются. Из 2 исходных хромосом формируется одна цельная, метацентрическая. Несмотря на потерю части генетического материала развития патологий в таком случае обычно не происходит, поскольку функции утраченных участков компенсируются аналогичными генами в остальных 8 акроцентрических хромосомах.

При концевых делециях (то есть при их утрате) может сформироваться кольцевая хромосома. У ее носителя, получившего такой генный материал от одного из родителей, отмечают частичную моносомию по концевым участкам. При разрыве через центромеру может сформироваться изохромосома, имеющая одинаковые по набору генов плечи (у обычной хромосомы они отличаются).

В некоторых случаях может развиваться однородительская дисомия. Она возникает, если при нерасхождении хромосом и оплодотворении возникнет трисомия, а после этого одна из трех хромосом будет удалена. Механизм этого явления в настоящее время не изучен. Однако в результате в хромосомном наборе появится две копии хромосомы одного родителя, в то время как часть генной информации от второго родителя будет утеряна.

Многообразие вариантов искажения хромосомного набора обуславливает различные формы заболеваний.

Имеется три базовых принципа, которые позволяют точно классифицировать возникшую хромосомную патологию. Их соблюдение обеспечивает однозначное указание на форму отклонения.

Согласно первому принципу необходимо определить характеристику мутации, генной или хромосомной, причем требуется также четко указать конкретную хромосому. К примеру, это может быть простая трисомия по 21 хромосоме или триплоидия. Сочетание индивидуальной хромосомы и типа мутации определяет формы хромосомной патологии. Благодаря соблюдению этого принципа можно точно установить, в какой структурной единице имеются изменения, а также выяснить, зафиксирован избыток или недостаток хромосомного материала. Такой подход более эффективен, чем классификация по клиническим признакам, поскольку многие отклонения вызывают сходные нарушения развития организма.

Согласно второму принципу нужно определить тип клеток, в котором произошла мутация – зигота или гамета. Мутации в гаметах приводят к появлению полных форм хромосомного заболевания. В каждой клетке организма будет содержаться копия генетического материала с хромосомной аномалией. Если же нарушение происходит позднее, на этапе зиготы или во время дробления, то мутация классифицируется как соматическая. В этом случае часть клеток получает изначальный генетический материал, а часть – с измененным хромосомным набором. Одновременно в организме может присутствовать два и более типа наборов. Их сочетание напоминает мозаику, поэтому такая форма болезни называется мозаичной. Если в организме присутствует более 10% клеток с измененным хромосомным набором, клиническая картина повторяет полную форму.

Согласно третьему принципу выявляется поколение, в котором мутация появилась первый раз. Если изменение было отмечено в гаметах здоровых родителей, то говорят о спорадическом случае. Если же оно уже имелось в материнском или отцовском организме, то речь идет о наследуемой форме. Значительная часть унаследованных хромосомных заболеваний вызывается робертсоновскими транслокациями, инверсиями и сбалансированными реципрокными транслокациями. В процессе мейоза они могут привести к образованию патологической комбинации.

Полная точная диагностика подразумевает, что установлены тип мутации, затронутая хромосома, выяснен полный или мозаичный характер заболевания, а также установлена передача по наследству или спорадическое возникновение. Получить необходимые для этого данные можно при проведении генетической диагностики с использованием проб пациента, а в некоторых случаях и его родственников.

Общие вопросы

Интенсивное развитие генетики в течение последних десятилетий позволило развить отдельное направление хромосомной патологии, которая постепенно приобретает все большое значение. К этой области относятся не только хромосомные болезни, но и различные нарушения во время внутриутробного развития (к примеру, выкидыши). В настоящее время счет аномалий идет уже на 1000. Свыше ста форм характеризуются клинически очерченной картиной и называются синдромами.

Выделяется несколько групп болезней. Триплоидией называется случай, при котором в клетках организма имеется лишняя копия генома. Если же появился дубликат только одной хромосомы, то подобное заболевание называется трисомией. Также причинами аномального развития организма могут быть делеции (удаленные участки генетического кода), дупликации (соответственно, лишние копии генов или их групп) и иные дефекты. Английский врач Л. Даун в 1866 году описал одну из самых известных болезней такого рода. Синдром, получивший его имя, развивается при наличии лишней копии 21 хромосомы (трисомия-21). Трисомии по другим хромосомам, как правило, заканчиваются выкидышами или приводят к смерти в детском возрасте из-за серьезных нарушений в развитии.

Позже были открыты случаи моносомии по X-хромосоме. В 1925 году Шерешевский Н.А и в 1938 году Тернер Г. описали его симптомы. Трисомия-XXY, которая встречается у мужчин, была описана Клайнфельтером в 1942 году.

Указанные случаи заболеваний стали первыми объектами исследований в этой области. После того, как расшифровали этиологию трех перечисленных синдромов, фактически появилось направление хромосомных болезней. В течение 60-х годов дальнейшие цитогенетические исследования привели к формированию клинической цитогенетики. Ученые доказали связь между патологическими отклонениями и хромосомными мутациями, а также получили статистические данные о частоте появления мутаций у новорожденных и в случаях самопроизвольного прерывания беременности.

Типы хромосомных аномалий

Хромосомные аномалии могут быть как относительно крупными, так и небольшими. В зависимости от их размеров меняются методы исследования. К примеру, для точечных мутаций, делеций и дупликаций, касающихся участков длиной в сотню нуклеотидов, обнаружение при помощи микроскопа невозможно. Определить хромосомное нарушение при помощи метода дифференциального окрашивания возможно только в том случае, если величина затронутого участка исчисляется в миллионах нуклеотидов. Небольшие мутации можно выявить лишь при помощи установления нуклеотидной последовательности. Как правило, большие по размерам нарушения (к примеру, видимые в микроскоп) приводят к более выраженному воздействию на функционирование организма. Кроме того, аномалия может затрагивать не только ген, но и участок наследственного материала, функции которого в настоящее время не исследованы.

Моносомией называется аномалия, выражающаяся в отсутствии одной из хромосом. Обратным случаем является трисомия – добавление лишней копии хромосомы к стандартному набору из 23 пар. Соответственно, меняется и число копий генов, которые в норме присутствуют в двух экземплярах. При моносомии отмечается нехватка гена, при трисомии – его избыток. Если хромосомная аномалия приводит к изменению числа отдельных участков, то говорят о частичной трисомии или моносомии (к примеру, по плечу 13q).

Известны также случаи однородительской дисомии. При этом пара гомологичных хромосом (либо одна и часть гомологичной ей) попадает в организм от одного из родителей. Причиной является неизученный механизм, предположительно состоящий из двух фаз – образование трисомии и удаление одной из трех хромосом. Воздействие однородительской дисомии может быть как незначительным, там и заметным. Дело в том, что если в одинаковых хромосомах имеется рецессивный мутантный аллель, то он автоматически проявляется. В то же время родитель, от которого была получена хромосома с мутацией, из-за гетерозиготности по гену может не иметь проблем со здоровьем.

Из-за высокой важности генетического материала для всех этапов развития организма даже небольшие аномалии могут вызвать серьезные изменения в скоординированной деятельности генов. Ведь их совместная работа шлифовалась в течение миллионов лет эволюции. Неудивительно, что последствия от возникновения такой мутации, скорее всего, начинают проявляться уже на уровне гамет. Особенно сильно они влияют на мужчин, поскольку зародыш в определенный момент должен перейти с женского пути развития на мужской. Если же активности соответствующих генов недостаточно, возникают различные отклонения, вплоть до гермафродитизма.


Первые исследования эффектов от хромосомных нарушений стали проводить в 60-х годах, после того как был установлен хромосомный характер некоторых заболеваний. Можно условно выделить две большие группы связанных эффектов: врожденные пороки развития и изменения, вызывающие летальные исходы. Современная наука располагает сведениями, что хромосомные аномалии начинают проявляться уже на стадии зиготы. Летальные эффекты при этом являются одной из основных причин гибели плода в утробе (этот показатель у человека достаточно высок).

Хромосомные аберрации – это изменение структуры хромосомного материала. Они могут как возникать спорадически, так и передаваться по наследству. Точная причина, по которой они появляются, не установлена. Ученые полагают, что за некоторую часть таких мутаций отвечают различные факторы окружающей среды (например, химически активные вещества), которые воздействуют на эмбрион или даже на зиготу. Интересен тот факт, что большая часть хромосомных аберраций обычно связана с хромосомами, которые зародыш получает от отца.

Значительная часть хромосомных аберраций встречается очень редко и была обнаружена один раз. В то же время некоторые другие достаточно часто встречаются, причем даже у людей, не связанных родственными узами. К примеру, широко распространена транслокация центромерных или близких к ним районов 13 и 14 хромосом. Утрата неактивного хроматина коротких плеч практически не влияет на состояние здоровья. При аналогичных робертсоновских транслокациях в кариотип попадает 45 хромосом.

Примерно две трети всех обнаруживаемых у новорожденных хромосомных аномалий компенсируются за счет других копий генов. По этой причине они не несут серьезной угрозы нормальному развитию ребенка. Если же компенсация нарушения невозможна, возникают пороки развития. Часто такая несбалансированная аномалия выявляется у больных с умственной отсталостью и другими врожденными пороками, а также у плода после самопроизвольных абортов.

Известны компенсированные аномалии, которые способны наследоваться из поколения в поколение без возникновения заболеваний. В некоторых случаях такая аномалия может перейти в несбалансированную форму. Так, если имеется транслокация, затрагивающая 21 хромосому, возрастает риск трисомии по ней. По статистике такие транслокации имеются у каждого 20 ребенка, у которого зафиксирована трисомия-21, причем в каждом пятом случае аналогичное нарушение есть у одного из родителей. Поскольку большая часть детей с вызванной транслокацией трисомией-21 рождается у молодых (менее 30 лет) мам, то в случае обнаружения этого заболевания у ребенка необходимо произвести диагностическое обследование молодых родителей.

Риск появления нарушений, которые не компенсируются, сильно зависит от транслокации, поэтому теоретические расчеты затруднены. Тем не менее, приблизительно определить вероятность соответствующей патологии можно на основании статистических данных. Такая информация собрана для распространенных транслокаций. В частности, робертсоновская транслокация между 14 и 21 хромосомами у матери с вероятностью 2 процента приводит к трисомии-21 у ребенка. Эта же транслокация у отца передается по наследству с вероятностью 10%.

Распространенность хромосомных аномалий

Результаты исследований показывают, что как минимум десятая часть яйцеклеток после оплодотворения и около 5-6 процентов плодов имеют различные хромосомные аномалии. Как правило, на 8-11 неделе в таком случае происходит самопроизвольное прерывание беременности. В некоторых случаях они вызывают более поздние выкидыши или приводят к рождению мертвого ребенка.

У новорожденных (по результатам обследования более 65 тысяч детей) изменение числа хромосом либо значительные хромосомные аберрации встречаются примерно у 0,5% от общего количества. Как минимум каждый 700-й имеет трисомию по 13, 18 или 21 хромосоме; около 1 из 350 мальчиков имеют расширенный до 47 единиц набор хромосом (кариотипы 47,XYY и 47,XXY). Моносомия по X-хромосоме встречается реже – единичные случаи на несколько тысяч. Порядка 0,2% имеют компенсированные хромосомные аберрации.

У взрослых иногда также выявляются наследуемые отклонения (как правило, компенсированные), иногда с трисомией по половым хромосомам. Исследования также показывают, что примерно 10-15 процентов от общего числа случаев умственной отсталости могут быть объяснены наличием хромосомной аномалии. Этот показатель значительно возрастает, если вместе с нарушениями умственного развития наблюдаются анатомические дефекты. Бесплодие также часто вызывается лишней половой хромосомой (у мужчин) и моносомией/аберрацией по X хромосоме (у женщин).

Связь хромосомных аномалий и злокачественных образований

Как правило, исследование клеток злокачественных новообразований приводит к обнаружению видимых в микроскоп хромосомных аномалий. Сходные результаты дает проверка при лейкозе, лимфоме и ряде других заболеваний.

В частности, для лимфом нередким случаем является обнаружение транслокации, сопровождающейся разрывом внутри или рядом с локусом тяжелой цепи иммуноглобулина (14 хромосома). При этом ген MYC перемещается с 8 хромосомы на 14.

Для миелолейкоза в большинстве случаев (свыше 95%) фиксируется транслокация между 22 и 9 хромосомами, вызывающая появление характерной «филадельфийской» хромосомы.

Бластный криз в процессе развития сопровождается появлением в кариотипе последовательных хромосомных аномалий.

Методами дифференциального окрашивания с последующим наблюдением в микроскоп, а также при помощи молекулярно-генетических способов тестирования, можно своевременно выявлять хромосомные аномалии при различных лейкозах. Эта информация помогает сделать прогноз развития, по ней уточняется диагноз и корректируется терапия.

Для распространенных солидных опухолей, таких, как рак толстой кишки, рак молочной железы и т.д. обычные цитогенетические методы применимы с некоторыми ограничениям. Тем не менее, характерные для них хромосомные аномалии также были выявлены. Имеющиеся в опухолях отклонения часто связаны с генами, отвечающими за процесс нормального роста клеток. Из-за амплификации (образования множественных копий) гена иногда отмечается формирование мелких мини-хромосом в клетках новообразований.

В некоторых случаях появление злокачественного образования вызывает потеря гена, который должен обеспечивать подавление пролиферации. Причин может быть несколько: делеции и разрыв в процессе транслокации являются наиболее частыми. Мутации такого рода принято считать рецессивными, поскольку наличие даже одной нормальной аллели обычно обеспечивает достаточный контроль роста. Нарушения могут появляться или наследоваться. Если же в геноме отсутствует нормальная копия гена, то пролиферация перестает зависеть от регулирующих факторов.

Таким образом, наиболее значимыми хромосомными аномалиями, влияющими на возникновение и рост злокачественных новообразований, являются следующие типы:

Транслокации, поскольку они могут привести к нарушению нормального функционирования генов, отвечающих за пролиферацию (либо вызвать их усиленную работу);

Делеции, которые наряду с прочими рецессивными мутациями вызывают изменения в процессе регуляции роста клетки;

Рецессивные мутации, из-за рекомбинации становящиеся гомозиготными и оттого проявляющиеся в полной мере;

Амплификации, стимулирующие пролиферацию клеток опухоли.

Выявление указанных мутаций в ходе генетической диагностики может указывать на повышенный риск развития злокачественных новообразований.

Известные заболевания хромосомной природы

Одним из самых известных заболеваний, происходящих по причине наличия аномалий в генетическом материале, является синдром Дауна. Он обуславливается трисомией по 21 хромосоме. Характерным признаком этой болезни является отставание в развитии. Дети испытывают серьезные проблемы во время обучения в школе, часто им требуется альтернативная методика преподавания материала. Вместе с тем отмечаются нарушения физического развития – плоское лицо, увеличенные глаза, клинодактилия и другие. Если такие люди прикладывают значительные усилия, они могут достаточно хорошо социализироваться, известен даже случай успешного получения высшего образования мужчиной с синдромом Дауна. У больных повышен риск заболеть деменцией. Это и ряд других причин приводит к небольшой продолжительности жизни.

К трисомии относится и синдром Патау, только в этом случае имеется три копии 13 хромосомы. Для заболевания характерны множественные пороки развития, часто с полидактилией. В большинстве случаев отмечается нарушение деятельности центральной нервной системы либо ее неразвитость. Часто (примерно в 80 процентах) больные имеют пороки развития сердца. Тяжелые нарушения приводят к высокой смертности – в первый год жизни умирает до 95% детей с этим диагнозом. Заболевание не поддается лечению или коррекции, как правило, можно лишь обеспечить достаточно постоянный контроль состояния человека.

Еще одна форма трисомии, с которой рождаются дети, относится к 18 хромосоме. Заболевание в этом случае носит название синдрома Эдвардса и характеризуется множественными нарушениями. Деформируются кости, часто наблюдается измененная форма черепа. Сердечно-сосудистая система обычно с пороками развития, также проблемы отмечаются с органами дыхания. В результате около 60% детей не доживают до 3 месяцев, к 1 году умирает до 95% детей с этим диагнозом.

Трисомия по другим хромосомам у новорожденных практически не встречается, поскольку почти всегда приводит к преждевременному прерыванию беременности. В части случаев рождается мертвый ребенок.

С нарушениями числа половых хромосом связан синдром Шерешевского-Тернера. Из-за нарушений в процессе расхождения хромосом теряется X-хромосома в женском организме. В результате организм не получает должного количества гормонов, поэтому нарушается его развитие. В первую очередь это относится к половым органам, которые развиваются лишь отчасти. Практически всегда для женщины это обозначает невозможность иметь детей.

У мужчин полисомия по Y или X хромосоме приводит к развитию синдрома Клайнфельтера. Для этого заболевания характерна слабая выраженность мужских признаков. Зачастую сопровождается гинекомастией, возможно отставание в развитии. В большинстве случаев наблюдаются ранние проблемы с потенцией и бесплодие. В этом случае, как и для синдрома Шерешевского-Тернера, выходом может стать экстракорпоральное оплодотворение.

Благодаря методам пренатальной диагностики стало возможным выявление этих и других заболеваний у плода во время беременности. Семейные пары могут принять решение о прерывании беременности, чтобы попробовать зачать другого ребенка. Если же они принимают решение выносить и родить малыша, то знание особенностей его генетического материала позволяет заранее подготовиться к определенным методам профилактики или лечения.

Кариотип – систематизированный набор хромосом ядра клетки с его количественными и качественными характеристиками.

Нормальный женский кариотип - 46,XX Нормальный мужской кариотип - 46,XY

Исследование кариотипа - процедура, призванная выявить отклонения структуры строения и числа хромосом.

Показания для кариотипирования:

  • Множественные врожденные пороки развития, сопровождаемые клинически анормальным фенотипом или дизморфизмом
  • Умственная отсталость или отставание в развитии
  • Нарушение половой дифференцировки или аномалии полового развития
  • Первичная или вторичная аменорея
  • Аномалии спермограммы – азооспермия или тяжелая олигоспермия
  • Бесплодие неясной этиологии
  • Привычное невынашивание
  • Родители пациента со структурными хромосомными аномалиями
  • Повторное рождение детей с хромосомными аномалиями

К сожалению, с помощью исследования кариотипа можно определить лишь крупные структурные перестройки. В большинстве же случаев аномалии строения хромосом представляют собой микроделеции и микродупликации невидимые под микроскопом. Однако такие изменения хорошо идентифицируются современными молекулярными цитогенетическими методами - флуоресцентной гибридизацией (FISH) и хромосомным микроматричным анализом.

Аббревиатура FISH расшифровывается как fluorescent in situ hybridization – флуоресцентная гибридизация на месте. Это цитогенетический метод, который применяют для выявления и определения положения специфической последовательности ДНК на хромосомах. Для этого используют специальные зонды - нуклеозиды, соединенные с флуорофорами или некоторыми другими метками. Визуализацию связавшихся ДНК-зондов проводят при помощи флуоресцентного микроскопа.

Метод FISH позволяет изучать небольшие хромосомные перестройки, которые не идентифицируются при стандартном исследовании кариотипа. Однако, имеет один существенный недостаток. Зонды являются специфичными только к одному участку генома и, как следствие, при одном исследовании можно определить наличие или число копий только этого участка (или нескольких при использовании многоцветных зондов). Поэтому важным является правильная клиническая предпосылка, а FISH анализ может только подтвердить иди не подтвердить диагноз.

Альтернативой этому методу является хромосомный микроматричный анализ, который при такой же точности, чувствительности и специфичности определяет количество генетического материала в сотнях тысяч (и даже миллионах) точек генома, что дает возможность диагностики практически всех известных микроделеционных и микродупликационных сииндромов.

Хромосомный микроматричный анализ – молекулярно-цитогенетический метод для выявления вариаций числа копий ДНК по сравнению с контрольным образцом. При выполнении этого анализа исследу¬ются все клинически значимые участки генома, что позволяет с максимальной точностью исключить хромосомную патологию у обследуемого. Таким образом могут быть выявлены патогенные деле¬ции (исчезновение участков хромосом), дупликации (появление дополни¬тельных копий генетического материала), участки с потерей гетерозиготности, которые имеют важное значение при болезнях импринтинга, близкородственных браках, аутосомно-рецессивных заболеваниях.

Когда необходим хромосомный микроматричный анализ

  • В качестве теста первой линии для диагностики пациентов с дизморфиями, врожденными пороками развития, умственной отсталостью/задержкой развития, множественными врожденными аномалиями, аутизмом, судорогами или любым подозрением на наличие геномного дисбаланса.
  • В качестве замены кариотипа, FISH и сравнительной геномной гибридизации, если подозревается микроделеционный/микродупликационный синдром.
  • В качестве исследования для выявления несбалансированных хромосомных аберраций.
  • В качестве дополнительного диагностического исследования при моногенных заболеваниях, связанных с функциональной потерей одного аллеля (гаплонедостаточностью), особенно если при секвенировании не удается выявить патогенную мутацию, и делеция всего гена может быть причиной.
  • Для определения происхождения генетического материала при однородительских дисомиях, дупликациях, делециях.

1 тест - 400 синдромов (список)

Введение в хромосомный микроматричный анализ.

Информация для врачей

Правила забора материала для хромосомного микроматричного анализа

Дорогие мои, обращаюсь к вам с просьбой о помощи! Прислали мне вот такое письмо, я просто не могу остаться в стороне, т.к.вопрос стоит о ЖИЗНИ МАЛЫША находящегося в утробе матери. А, что, для нас и для нее главное в жизни, только жизнь и здоровье нащих детей! Так давайте не останемся в стороне и поможем, хоть малой часть нашего внимания и средствами. Ведь каждый рубль подаренный малышу дает ему шанс ЖИТЬ И СТАТЬ ЗДОРОВЫМ! Добрый день! Прошу у Вас об очень срочной помощи! Мне 39 лет, беременность 22 неделя! Сделав узи в 18 недель, меня шокировали врачи о том, что у моего малыша ВПР - диафрагмальная грыжа плода (желудок находится в грудной полости и затрудняет развитие сердца и легких). С тех пор я прошла 5 узи и 2 консилиума в городе Калининград. в итоге врачи сказали что нам необходимо очень срочно ехать в Москву на консилиум в НАУЧНЫЙ ЦЕНТР АКУШЕРСТВА, ГИНЕКОЛОГИИ И ПЕРИНАТОЛОГИИ имени академика В.И. Кулакова Минздрава России Шансы вылечить моего малыша - есть, и высокие шансы. Сейчас 21-22 неделя на консилиум ехать сказали срочно может внутриутробно сделают операцию. В лоне матери методом лапароскопии оперируют ребенку грыжу и увеличивают шансы рождения здорового ребенка до 96-98%. По предварительному подсчету необходимая сумма для лечения составляет около 200 тысяч рублей. В данный момент мы не в состоянии найти такую сумму. Я не работаю с октября так как все это время пролежала на сохранении. у мужа зарплата невысокая, а сумму нужно собрать очень срочно - концилиум и возможную операцию нужно провести в ближайшие 1 - 2 недель. Обращаемся к Вам, с просьбой помочь средствами и дать моему малышу шанс на жизнь. Конечно мы с мужем и родными руки не опускаем, будем бороться за жизнь нашего ребенка.., но все таки ПРОШУ, ПОЖАЛУЙСТА, ПОМОГИТЕ!!! наши реквизиты яндекс деньги Дорогие мои, обращаюсь к вам с просьбой о помощи! Прислали мне вот такое письмо, я просто не могу остаться в стороне, т.к.вопрос стоит о ЖИЗНИ МАЛЫША находящегося в утробе матери. А, что, для нас и для нее главное в жизни, только жизнь и здоровье нащих детей! Так давайте не останемся в стороне и поможем, хоть малой часть нашего внимания и средствами. Ведь каждый рубль подаренный малышу дает ему шанс ЖИТЬ И СТАТЬ ЗДОРОВЫМ! Добрый день! Прошу у Вас об очень срочной помощи! Мне 39 лет, беременность 22 неделя! Сделав узи в 18 недель, меня шокировали врачи о том, что у моего малыша ВПР - диафрагмальная грыжа плода (желудок находится в грудной полости и затрудняет развитие сердца и легких). С тех пор я прошла 5 узи и 2 консилиума в городе Калининград. в итоге врачи сказали что нам необходимо очень срочно ехать в Москву на консилиум в НАУЧНЫЙ ЦЕНТР АКУШЕРСТВА, ГИНЕКОЛОГИИ И ПЕРИНАТОЛОГИИ имени академика В.И. Кулакова Минздрава России Шансы вылечить моего малыша - есть, и высокие шансы. Сейчас 21-22 неделя на консилиум ехать сказали срочно может внутриутробно сделают операцию. В лоне матери методом лапароскопии оперируют ребенку грыжу и увеличивают шансы рождения здорового ребенка до 96-98%. По предварительному подсчету необходимая сумма для лечения составляет около 200 тысяч рублей. В данный момент мы не в состоянии найти такую сумму. Я не работаю с октября так как все это время пролежала на сохранении. у мужа зарплата невысокая, а сумму нужно собрать очень срочно - концилиум и возможную операцию нужно провести в ближайшие 1 - 2 недель. Обращаемся к Вам, с просьбой помочь средствами и дать моему малышу шанс на жизнь. Конечно мы с мужем и родными руки не опускаем, будем бороться за жизнь нашего ребенка.., но все таки ПРОШУ, ПОЖАЛУЙСТА, ПОМОГИТЕ!!! наши реквизиты Яндекс деньги: 410014049088714 Карта сбербанка России: 4276 2000 1177 5926 QIWI: 79114871215 реквизиты сбербанка: БИК банка получателя 042748634 Банк получателя КАЛИНИНГРАДСКОЕ ОСБ N 8626 Г.КАЛИНИНГРАД Номер корр/счета получателя 30101810100000000634 номер расч/счета получателя 423 07 840 7 20240540854 все документы предоставлю в личку

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама