THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама
Помогите пожалуйста режить 2 работы, очень срочно надо. Надеюсь на вашу помощь, так как в биологии я не очень сильна. А1. Клетки сходные по строению и

выполняемым функциям, образуют 1) Ткани; 2) органы; 3) системы органов; 4) единый организм. А2. В процессе фотосинтеза растения 1) Обеспечивают себя органическими веществами 2) окисляют сложные органические вещества до простых 3) Поглощают кислород и выделяют углекислый газ 4) Расходуют энергию органических веществ. А3. В клетке происходит синтез и расщепление органических веществ, поэтому её называют единицей 1) Строения 2) жизнедеятельности 3) роста 4) размножения. А4. Какие структуры клетки распределяются строго равномерно между дочерними клетками в процессе митоза? 1) Рибосомы; 2) митохондрии; 3) хлоропласты; 4) хромосомы. А5. Дезоксирибоза является составной частью 1) Аминокислот 2) белков 3) и РНК 4) ДНК. А6. Вирусы, проникая в клетку хозяина, 1) Питаются рибосомами; 2) поселяются в митохондриях; 3) Воспроизводят свой генетический материал; 4) Отравляют её вредными веществами, образующимися в ходе их обмена веществ. А7. Каково значение вегетативного размножения? 1) способствует быстрому увеличению численности особей вида; 2) ведет к появлению вегетативной изменчивости; 3) увеличивает численность особей с мутациями; 4) приводит к разнообразию особей в популяции. А8. Какие структуры клетки, запасающие питательные вещества, не относят к органоидам? 1) Вакуоли; 2) лейкопласты; 3) хромопласты; 4) включения. А9. Белок состоит из 300 аминокислот. Сколько нуклеотидов в гене, который служит матрицей для синтеза белка? 1) 300 2) 600 3) 900 4) 1500 А10. В состав вирусов, как и бактерий, входят 1) нуклеиновые кислоты и белки 2) глюкоза и жиры 3) крахмал и АТФ 4) вода и минеральные соли А11. В молекуле ДНК нуклеотиды с тимином составляют 10 % от общего числа нуклеотидов. Сколько нуклеотидов с цитозином в этой молекуле? 1) 10% 2) 40% 3)80% 4) 90% А12. Наибольшее количество энергииосвобождается при расщеплении одной связи в молекуле 1) Полисахарида 2) белка 3) глюкозы 4) АТФ 2 Вариант А1. Благодаря свойству молекул ДНК самоудваиваться 1) Происходят мутации 2) у особей возникают модификации 3) появляются новые комбинации генов 4) передаётся наследственная информация к дочерним клеткам. А2. Какое значение митохондрии в клетке 1) транспортируют и выводят конечные продукты биосинтеза 2) преобразуют энергию органических веществ в АТФ 3) осуществляют процесс фотосинтеза 4) синтезируют углеводы А3. Митоз в многоклеточном организме составляет основу 1) гаметогенеза 2) роста и развития 3) обмена веществ 4) процессов саморегуляции А4. Каковы цитологические основы полового размножения организма 1) способность ДНК к репликации 2) процесс формирования спор 3)накопление энергии молекулой АТФ 4) матричный синтез иРНК А5. При обратимой денатурации белка происходит 1) нарушение его первичной структуры 2) образование водородных связей 3) нарушение его третичной структуры 4) образование пептидных связей А6. В процессе биосинтеза белка молекулы иРНК переносят наследственную информацию 1) из цитоплазмы в ядро 2) одной клетки в другую 3)ядра к митохондриям 4) ядра к рибосомам. А7. У животных в процессе митоза в отличии от мейоза, образуются клетки 1) соматические 2) с половиной набором хромосом 3)половые 4) споровые. А8. В клетках растений, в отличие от клеток человека, животных, грибов, происходит А) выделение 2) питание 3) дыхание 4) фотосинтез А9. Фаза деления в которых, хроматиды расходятся к разным полюсам клетки 1) анафаза 2) метафаза 3) профаза 4) телофаза А10. Прикрепление нитей веретена деления к хромосомам происходит 1) Интерфаза; 2) профаза; 3) метафаза; 4) анафаза. А11. Окисление органических веществ с освобождением энергии в клетке происходит в процессе 1) Биосинтеза 2) дыхания 3) выделения 4) фотосинтеза. А12. Дочерние хроматиды в процессе мейоза расходятся к полюсам клетки в 1) Метафазе первого деления 2) Профазе второго деления 3) Анафазе второго деления 4) Телофазе первого деления

8. Какое из этих веществ является основным стройматериалом человеческой клетки?

а) углеводы;
б) белки;
в) нуклеиновые кислоты;
г) жиры.
9. В каком из вариантов ответов человек как многоуровневая и целостная живая система описывается правильно?
а) клетки - ткани - система органов - органы - целостный организм;
б) органы - клетки - ткани - система органов - целостный организм;
в) ткани - клетки - органы - целостный организм -система органов;
г) клетки - ткани - органы - система органов - целостный организм.
10. Какой процесс в организме человека называется биосинтезом?
а) распад органических соединений на неорганические соединения;
б) образование органических веществ из неорганических;
в) образование собственных белков, жиров и углеводов;
г) биосинтез для человека нехарактерен.

1. Какие вещества не относятся к органическим:

a. Белки
b. минеральные соли
c. углеводы
d. жиры
2. Кому обязана своим появлением стройная система классификации растительного и животного мира:
a. Жан Батист Ламарк
b. Карл Линней
c. Чарлз Дарвин

3. Какое оплодотворение у наземных животных:
a. Наружное
b. Внутреннее
c. Двойное

4. До каких промежуточных продуктов распадаются белки в пищеварительном тракте:
a. глицерин и жирные кислоты
b. простые углеводы
c. аминокислоты

5. Сколько хромосом содержится в половых гаметах человека:
a. 23
b. 46
c. 92
6. Какова функция хлоропластов
a. Синтез белка
b. Синтез АТФ
c. Синтез глюкозы
7. Клетки у которых есть ядро относятся к:
a. Эукариотическая клетка
b. Прокариотическая клетка
8. Организмы, создающие органические вещества в экосистеме:
a. Консументы
b. Продуценты
c. Редуценты
9. Какой клеточный органоид отвечает за выработку энергии в клетке:
a. Ядро
b. Хлоропласт
c. Митохондрия

10. Какие органоиды характерны только для растительных клеток
a. Эндоплазматическая сеть
b. Пластиды
c. Рибосомы

11. Сколько хромосом содержится в соматических клетках человека
a. 23
b. 46
c. 92
12. Какое оплодотворение у покрытосеменных растений:
a. Внутреннее

В ходе экзэргонических реакций (например, окислительных) выделяется энергия. Примерно 40-50% ее запасается в специальных аккумуляторах. Выделяют 3 основных аккумулятора энергии:

1. Внутренняя мембрана митохондрий – это промежуточный аккумулятор энергии при получении АТФ. За счет энергии окисления веществ происходит «выталкивание» протонов из матрикса в межмембранное пространство митохондрий. В результате создается электрохимический потенциал на внутренней мембране митохондрий. При разрядке мембраны энергия электрохимического потенциала трансформируется в энергию АТФ: Е окисл. ® Е эхп ® Е АТФ. Для реализации этого механизма внутренняя мембрана митохондрий содержит ферментативную цепь переноса электронов на кислород и АТФ-синтазу (протонзависимую синтазу АТФ).

2. АТФ и другие макроэргические соединения . Материальным носителем свободной энергии в органических веществах являются химические связи между атомами. Обычным энергетическим уровнем возникновения или распада химической связи является ~ 12,5 кДж/моль. Однако имеется ряд молекул, при гидролизе связей которых выделяется более 21 кДж/моль энергии (табл. 6.1). К ним относятся соединения с макроэргической фосфоангидридной связью (АТФ), а также ацилфосфаты (ацетил-фосфат, 1,3-БФГК), енол-фосфаты (фосфоенолпируват) и фосфогуанидины (фосфокреатин, фосфоаргинин).

Таблица 6.1

Стандартная свободная энергия гидролиза некоторых фосфорилированных соединений

Примечание: 1 ккал = 4,184 кДж

Основным макроэргическим соединением в организме человека является АТФ.

В АТФ цепочка из трех фосфатных остатков связана с 5’-ОН группой аденозина. Фосфатные группы обозначаются как a, b и g. Два остатка фосфорной кислоты соединены между собой фосфоангидридными связями, а a-остаток фосфорной кислоты – фосфоэфирной связью. При гидролизе АТФ в стандартных условиях выделяется -30,5 кДж/моль энергии.

При физиологических значениях рН АТФ несет четыре отрицательных заряда. Одной из причин относительной нестабильности фосфоангидридных связей является сильное отталкивание отрицательно заряженных атомов кислорода, которое ослабевает при гидролитическом отщеплении концевой фосфатной группы. Поэтому такие реакции являются высоко экзэргоническими.

В клетках АТФ находится в комплексе с ионами Mg 2+ или Mn 2+ , координационно связанными с a- и b-фосфатом, что увеличивает изменение свободной энергии при гидролизе АТФ до 52,5 кДж/моль.

Центральное место в приведенной шкале (табл. 9.1.) занимает цикл АТФ « АДФ + Рн. Это позволяет АТФ быть как универсальным аккумулятором, так и универсальным источником энергии для живых организмов . В клетках теплокровных АТФ как универсальный аккумулятор энергии возникает двумя путями:

1) аккумулирует энергию более энергоемких соединений, стоящих выше АТФ в термодинамической шкале без участия О 2 – субстратноефосфорилирование : S ~ Р + АДФ ® S + АТФ;

2) аккумулирует энергию электрохимического потенциала при разрядке внутренней мембраны митохондрии – окислительное фосфорилирование.

АТФ является универсальный источником энергии для совершения основных видов работы клетки (движение, трансмембранный перенос веществ, биосинтезы): а) АТФ + Н 2 О ® АДФ + Рн;
б) АTФ + Н 2 О ® АМФ + РРн. Во время интенсивных упражнений скорость использования АТФ может достигать 0,5 кг/мин. Если ферментативная реакция термодинамически невыгодна, то она может осуществиться при сопряжении с реакцией гидролиза АТФ. Гидролиз молекулы АТФ изменяет равновесное отношение субстратов и продуктов в сопряженной реакции в 10 8 раз.

К макроэргическим соединениям относят также нуклеозидтрифосфаты, которые обеспечивают энергией ряд биосинтезов: УТФ – углеводов; ЦТФ – липидов; ГТФ – белков. В биоэнергетике мышц важное место занимает креатинфосфат.

3. НАДФН+Н + (НАДФН 2) – никотинамидадениндинуклеотидфосфат восстановленный. Это специальный аккумулятор с высокой энергией, который используется в клетке (цитозоль) для биосинтезов. R-CH 3 + НАДФН 2 + О 2 ® R-CH 2 ОН + Н 2 О + НАДФ + (здесь показано создание ОН-группы в молекуле).

Освобождение энергии в живой клетке осуществляется постепенно, благодаря этому на различных этапах ее выделения она может аккумулироваться в удобной для клетки химической форме в виде АТФ. Различают три фазы, которые совпадают со стадиями катаболизма.

Первая фаза – подготовительная. На этой стадии происходит распад полимеров до мономеров в желудочно-кишечном тракте или внутри клеток. Освобождается до 1% энергии субстратов, которая рассеивается в виде тепла.

Вторая фаза – распад полимеров до общих промежуточных продуктов. Для нее характерно частичное (до 20%) освобождение энергии, заключенной в исходных субстратах. Часть этой энергии аккумулируется в фосфатных связях АТФ, а часть рассеивается в виде тепла.

Третья фаза – распад метаболитов до СО 2 и Н 2 О с участием кислорода в митохондриях . Примерно 80% всей энергии химических связей веществ освобождается в данной фазе, которая сосредотачивается в фосфатных связях АТФ. Строение митохондрий:

1. Внешняя мембрана МХ отграничивает внутреннее пространство; проницаема для О 2 и ряда низкомолекулярных веществ. Содержит ферменты метаболизма липидов и моноаминов.

2. Межмембранное пространство (ММП) содержит аденилаткиназу
(АТФ + АМФ « 2 АДФ) и ферменты фосфорилирования АДФ, не связанные с дыхательными цепями.

3. Внутренняя мембрана митохондрий (ВМП): 20-25% от всех белков составляют ферменты цепей переноса протонов и электронов и окислительного фосфорилирования . Проницаема лишь для малых молекул (О 2 , мочевина) и содержит специфические трансмембранные переносчики.

4. Матрикс содержит ферменты цикла трикарбоновых кислот,
b-окисления жирных кислот (основные поставщики субстратов окисления ). Здесь находят ферменты автономного митохондриального синтеза ДНК, РНК, белков и др.

Существует мнение, что реально в клетках существует митохондриальный ретикулум , посредством которого формируется одна гигантская разветвленная митохондрия. При электронномикроскопическом анализе клеток выявляется общепринятая картина отдельных митохондрий, получаемая в результате поперечных срезов разветвленной структуры митохондрии. При гомогенизировании тканей выделяются отдельные митохондрии как результат замыкания разрушенных мембранных структур митохондрии. Единая для клетки мембранная структура митохондрии может служить для транспорта энергии в любые отделы клетки. Такие митохондрии обнаружены в клетках жгутиковых, дрожжей, ряда тканей (мышцы).

У бактерий митохондрий нет , аэробное окисление и образование АТФ протекают в цитоплазматической мембране в особых мембранных образованиях – мезосомах. Мезосомы представлены двумя основными формами – ламмелярной и везикулярной.

В основе биологического окисления лежат окислительно-восстановительные процессы, определяемые переносом электронов . Вещество окисляется, если теряет электроны или одновременно электроны и протоны (водородные атомы, дегидрирование) или присоединяет кислород (оксигенирование). Противоположные превращения – восстановление.

Способность молекул отдавать электроны другой молекуле определяется окислительно-восстановительным потенциалом (редокс-потенциалом, Е 0 ¢, или ОВП). Редокс-потенциал определяют путем измерения электродвижущей силы в вольтах. В качестве стандарта принят редокс-потенциал реакции при рН 7,0: Н 2 « 2Н + + 2е - , равный - 0,42 В. Чем меньше потенциал окислительно-восстановительной системы, тем легче она отдает электроны и в большей степени является восстановителем. Чем выше потенциал системы, тем сильнее выражены ее окислительные свойства, т.е. способность принимать электроны. Это правило лежит в основе последовательности расположения промежуточных переносчиков электронов от водородов субстратов до кислорода от НАДН (-0,32 В) до кислорода (+0,82 В).

При изучении окислительных процессов в клетках целесообразно придерживаться следующей схемы использования кислорода (табл. 6.2). Здесь рассматриваются три основных пути: 1) окисление субстрата путем дегидрирования с переносом двух атомов водорода на атом кислорода с образованием Н 2 О (энергия окисления аккумулируется в форме АТФ, на этот процесс расходуется более 90% кислорода) или молекулу кислорода с образованием Н 2 О 2 ; 2) присоединение атома кислорода с образованием гидроксильной группы (повышение растворимости субстрата) или молекулы кислорода (метаболизм и обезвреживание устойчивых ароматических молекул); 3) образование кислородных свободных радикалов, служащих как для защиты внутренней среды организма от чужеродных макромолекул, так и для повреждения мембран в механизмах окислительного стресса. Тканевое дыхание часть биологического окисления, при котором происходит дегидрирование и декарбоксилирование субстратов с последующим переносом протонов и электронов на кислород и выделением энергии в виде АТФ.

Таблица 6.2

Основные пути использования кислорода в клетках

Субстраты окисления – это молекулы, которые при окислении дегидрируются (теряют 2 Н). В основе классификации лежит представление о том, что стандартная свободная энергия окисления НАДН составляет DG 0 ¢ = -218 кДж/моль. В связи с этой величиной различают 3 вида субстратов:

1. Субстраты I рода (углеводородные) – сукцинат, ацил-КоА.

При их дегидрировании образуются непредельные соединения. Средняя энергия отщепления пары е - около 150 кДж/моль; НАД не может участвовать в дегидрировании субстратов I рода.

2. Субстраты II рода (спиртовые) – изоцитрат, малат. При их дегидрировании возникают кетоны. Средняя энергия отщепления пары е - около 200 кДж/моль, поэтому НАД может участвовать в дегидрировании субстратов II рода.

3. Субстраты III рода (альдегиды и кетоны) – глицеральдегид-3-фосфат, а также пируват и 2-оксоглутарат.

Энергия отщепления пары е - около 250 кДж/моль. Дегидрогеназы субстратов III рода часто содержат несколько коферментов. При этом часть энергии запасается до цепи переноса электронов.

В зависимости от типа субстрата окисления (т.е. от энергии отщепления пары е -) выделяют полную и укороченную дыхательные цепи (цепи переноса электронов, ЦПЭ). ЦПЭ – это универсальный конвейер по переносу электронов от субстратов окисления к кислороду, построенный в соответствии с градиентом окислительно-восстановительного потенциала. Главные компоненты дыхательной цепи расположены в порядке возрастания их окислительно-восстановительного потенциала. В полную ЦПЭ вступают субстраты II и III рода, в укороченную – субстраты I рода. ЦПЭ встроена во внутреннюю мембрану митохондрий. Атомы водорода или электроны перемещаются по цепи от более электроотрицательных компонентов к более электроположительному кислороду.

Энергетический обмен. Цепь переноса протонов и электронов – 5 ферментативных комплексов. Окислительное фосфорилирование. Окислительные процессы, не связанные с запасанием энергии – микросомальное окисление, свободно-радикальное окисление, активные формы кислорода. Антиоксидантная система

Введение в биоэнергетику

Биоэнергетика , или биохимическая термодинамика , занимается изучением энергетических превращений, сопровождающих биохимические реакции.

Изменение свободной энергии (∆G) – это та часть изменения внутренней энергии системы, которая может превращаться в работу. Иначе говоря, это полезная энергия и выражается уравнением

∆G = ∆Н - Т∆S,

где ∆Н – изменение энтальпии (теплоты), Т – абсолютная температура, ∆S – изменение энтропии. Энтропия служит мерой неупорядоченности, хаотичности системы и возрастает при самопроизвольных процессах.

Если значение ∆G отрицательное, то реакция протекает самопроизвольно и сопровождается уменьшением свободной энергии. Такие реакции называют экзэргоническими . Если значение ∆G положительное, то реакция будет протекать только при поступлении свободной энергии извне; такая реакция называется эндэргонической. При ∆G равном нулю система находится в равновесии. Величина ∆G при стандартных условиях протекания химической реакции (концентрация веществ-участников 1,0 М, температура 25 ºС, рН 7,0) обозначается DG 0 ¢ и называется стандартной свободной энергией реакции.

Жизненно важные процессы в организме – реакции синтеза, мышечное сокращение, проведение нервного импульса, транспорт через мембраны – получают энергию путем химического сопряжения с окислительными реакциями, в результате которых происходит высвобождение энергии. Т.е. эндэргонические реакции в организме сопряжены с экзэргоническими (рис.1).

Экзэргонические реакции

Рис.1. Сопряжение экзэргонических процессов с эндэргоническими.

Для сопряжения эндэргонических реакций с экзэргоническими реакциями необходимы аккумуляторы энергии в организме, в которых запасается примерно 50% энергии.

Аккумуляторы энергии в организме

1. Внутренняя мембрана митохондрий – это промежуточный аккумулятор энергии при получении АТФ. За счет энергии окисления веществ происходит «выталкивание» протонов из матрикса в межмембранное пространство митохондрий. В результате создается электрохимический потенциал (ЭХП) на внутренней мембране митохондрий. При разрядке мембраны энергия электрохимического потенциала трансформируется в энергию АТФ: Е окисл. ® Е эхп ® Е АТФ. Для реализации этого механизма внутренняя мембрана митохондрий содержит ферментативную цепь переноса электронов на кислород и АТФ-синтазу (протонзависимую синтазу АТФ).

2. АТФ и другие макроэргические соединения . Материальным носителем свободной энергии в органических веществах являются химические связи между атомами. Обычным энергетическим уровнем возникновения или распада химической связи является ~ 12,5 кДж/моль. Однако имеется ряд молекул, при гидролизе связей которых выделяется более 21 кДж/моль энергии (табл.1). К ним относятся соединения с макроэргической фосфоангидридной связью (АТФ), а также ацилфосфаты (ацетил-фосфат, 1,3-бисфосфоглицерат), енол-фосфаты (фосфоенолпируват) и фосфогуанидины (фосфокреатин, фосфоаргинин).

Таблица 1.

Стандартная свободная энергия гидролиза некоторых фосфорилированных соединений

Основным макроэргическим соединением в организме человека является АТФ.

В АТФ цепочка из трех фосфатных остатков связана с 5’-ОН группой аденозина. Фосфатные (фосфорильные) группы обозначаются как a, b и g. Два остатка фосфорной кислоты соединены между собой фосфоангидридными связями, а a-остаток фосфорной кислоты – фосфоэфирной связью. При гидролизе АТФ в стандартных условиях выделяется -30,5 кДж/моль энергии.

При физиологических значениях рН АТФ несет четыре отрицательных заряда. Одной из причин относительной нестабильности фосфоангидридных связей является сильное отталкивание отрицательно заряженных атомов кислорода, которое ослабевает при гидролитическом отщеплении концевой фосфатной группы. Поэтому такие реакции являются высоко экзэргоническими.

В клетках АТФ находится в комплексе с ионами Mg 2+ или Mn 2+ , координационно связанными с a- и b-фосфатом, что увеличивает изменение свободной энергии при гидролизе АТФ до 52,5 кДж/моль.

Центральное место в приведенной шкале (табл. 8.3) занимает цикл АТФ « АДФ + Рн. Это позволяет АТФ быть как универсальным аккумулятором, так и универсальным источником энергии для живых организмов .

В клетках теплокровных АТФ как универсальный аккумулятор энергии возникает двумя путями:

1) аккумулирует энергию более энергоемких соединений, стоящих выше АТФ в термодинамической шкале без участия О 2 – субстратноефосфорилирование : S ~ Р + АДФ ® S + АТФ;

2) аккумулирует энергию электрохимического потенциала при разрядке внутренней мембраны митохондрии – окислительное фосфорилирование .

АТФ является универсальным источником энергии для совершения основных видов работы клетки (передача наследственной информации, мышечное сокращение, трансмембранный перенос веществ, биосинтезы): 1) АТФ+Н 2 О®АДФ+Рн; 2) АTФ + Н 2 О ® АМФ + РРн.

Во время интенсивных упражнений скорость использования АТФ может достигать 0,5 кг/мин.

Если ферментативная реакция термодинамически невыгодна, то она может осуществиться при сопряжении с реакцией гидролиза АТФ. Гидролиз молекулы АТФ изменяет равновесное отношение субстратов и продуктов в сопряженной реакции в 10 8 раз.

Для количественной оценки энергетического состояния клетки используют показатель – энергетический заряд . Многие реакции метаболизма контролируются энергетическим обеспечением клеток, который контролируется энергетическим зарядом клетки. Энергетический заряд может колебаться от 0 (все АМФ) до 1 (все АТФ). Согласно Д.Аткинсону, образующие АТФ катаболические пути ингибируются высоким энергетическим зарядом клетки, а утилизирующие АТФ анаболические пути стимулируются высоким энергетическим зарядом клетки. Оба пути функционируют одинаково при энергетическом заряде, близком к 0,9 (точка перекреста на рисунке 8.3). Следовательно, энергетический заряд, подобно рН, является буферным регулятором метаболизма (соотношения катаболизма и анаболизма). В большинстве клеток энергетический заряд колеблется в пределах 0,80-0,95.

Энергетический заряд =

К макроэргическим соединениям относят также нуклеозидтрифосфаты, которые обеспечивают энергией ряд биосинтезов: УТФ – углеводов; ЦТФ – липидов; ГТФ – белков. В биоэнергетике мышц важное место занимает креатинфосфат.

3. НАДФН+Н + – никотинамидадениндинуклеотидфосфат восстановленный. Это специальный аккумулятор с высокой энергией, который используется в клетке (цитозоль) для биосинтезов. R-CH 3 + НАДФН 2 + О 2 ® R-CH 2 ОН + Н 2 О + НАДФ + (здесь показано создание ОН-группы в молекуле).

Пути потребления кислорода (биологическое окисление)

В основе биологического окисления лежат окислительно-восстановительные процессы, определяемые переносом электронов . Вещество окисляется, если теряет электроны или одновременно электроны и протоны (водородные атомы, дегидрирование) или присоединяет кислород (оксигенирование). Противоположные превращения – восстановление.

Способность молекул отдавать электроны другой молекуле определяется окислительно-восстановительным потенциалом (редокс-потенциалом, Е 0 ¢, или ОВП). Редокс-потенциал определяют путем измерения электродвижущей силы в вольтах. В качестве стандарта принят редокс-потенциал реакции при рН 7,0: Н 2 « 2Н + + 2е - , равный -0,42 В. Чем меньше потенциал окислительно-восстановительной системы, тем легче она отдает электроны и в большей степени является восстановителем. Чем выше потенциал системы, тем сильнее выражены ее окислительные свойства, т.е. способность принимать электроны. Это правило лежит в основе последовательности расположения промежуточных переносчиков электронов от водородов субстратов до кислорода.

При изучении окислительных процессов в клетках целесообразно придерживаться следующей схемы использования кислорода (табл. 2).

Таблица 2

Основные пути использования кислорода в клетках

Здесь рассматриваются три основных пути: 1) окисление субстрата путем дегидрирования с переносом двух атомов водорода на атом кислорода с образованием Н 2 О (энергия окисления аккумулируется в форме АТФ, на этот процесс расходуется более 90% кислорода) или молекулу кислорода с образованием Н 2 О 2 ; 2) присоединение атома кислорода с образованием гидроксильной группы (повышение растворимости субстрата) или молекулы кислорода (метаболизм и обезвреживание устойчивых ароматических молекул); 3) образование кислородных свободных радикалов, служащих как для защиты внутренней среды организма от чужеродных макромолекул, так и для повреждения мембран в механизмах окислительного стресса.

В биохимии и клеточной биологии под тканевым (клеточным) дыханием понимают молекулярные процессы, в результате которых происходит поглощение клеткой кислорода и выделение углекислого газа. Клеточное дыхание включает 3 стадии. На первой стадии органические молекулы – глюкоза, жирные кислоты и некоторые аминокислоты – окисляются с образованием ацетил-КоА. На второй стадии ацетил-КоА вступает в ЦТК, где его ацетильная группа ферментативно окисляется до СО 2 и выделяется HS-КоА. Энергия, высвобождающаяся при окислении, накапливается в восстановленных переносчиках электронов НАДН и ФАДН 2 . На третьей стадии электроны переносятся к О 2 , как конечному акцептору, через цепь переносчиков электронов, которая называется дыхательная цепь или цепь переноса электронов (ЦПЭ). При переносе электронов по дыхательной цепи выделяется большое количество энергии, которая используется для синтеза АТФ путем окислительного фосфорилирования.

Процесс тканевого дыхания оценивают с помощью дыхательного коэффициента:

RQ = число молей образованного СО 2 /число молей поглощенного О 2 .

Этот показатель позволяет оценить тип топливных молекул, используемых организмом: при полном окислении углеводов дыхательный коэффициент равен 1, белков – 0,80, жиров – 0,71; при смешанном питании величина RQ=0,85. Газометрическим методом Варбурга изучают тканевое дыхание в срезах органов: при окислении углеводных субстратов коэффициент СО 2 /О 2 стремится к 1, а при окислении липидных субстратов – 04-07.

ЦПЭ встроена во внутреннюю мембрану митохондрий . Электроны перемещаются по цепи от более электроотрицательных компонентов к более электроположительному кислороду: от НАДН (-0,32 В) до кислорода (+0,82 В).

ЦПЭ – это универсальный конвейер по переносу электронов от субстратов окисления к кислороду, построенный в соответствии с градиентом окислительно-восстановительного потенциала. Главные компоненты дыхательной цепи расположены в порядке возрастания их окислительно-восстановительного потенциала. В процессе переноса электронов по градиенту окислительно-восстановительного потенциала высвобождается свободная энергия.

Строение митохондрий

Митохондрииявляются органеллами клеток.Наружная мембрана проницаема для многих малых молекул и ионов, поскольку содержит много митохондриальных поринов – белков с молекулярной массой 30-35 кДа (называются также VDAC). Электрозависимые анионные каналы VDAC регулируют поток анионов (фосфаты, хлориды, органические анионы и адениловые нуклеотиды) через мембрану. Внутренняя мембрана митохондрий не проницаема для большинства ионов и полярных молекул. Имеется ряд специальных переносчиков для АТФ, пирувата и цитрата через внутреннюю мембрану митохондрий. Во внутренней мембране митохондрий выделяют матриксную (N) поверхность и цитозольную (Р) поверхность.

Митохондрии содержат собственную кольцевую ДНК, которая кодирует синтез ряда РНК и белков. Человеческая митохондриальная ДНК содержит 16569 пар оснований и кодирует 13 белков цепей переноса электронов. Митохондрии также содержат также ряд белков, которые кодируются ядерной ДНК.


Похожая информация.


Часть 1. Митохондрии эукариот.

В библии записано, что человека (Homo sapiens ) создали Боги по своему образу и подобию. Хотя во многом ограничили, но творческого начала не лишили. Уже сейчас человек создает роботов для облегчения своего труда, различные машины и устройства, которые не вечны так же, как и он сам. Источником энергии этих машин является зарядное устройство, аккумулятор, батарейка, их устройство нам сейчас хорошо знакомо. А знаем ли мы, как устроено наше зарядное устройство, энергетическая станция человека?

Итак, митохондрии эукариотических клеток и их роль в организме человека.
Начать следует с того, что митохондрии являются энергетической станцией клетки и всего организма человека в целом. Нас интересуют клетки эукариоты , ядерные, те клетки, которые содержат ядро. Одноклеточные живые организмы, не обладающие клеточным ядром это прокариоты, доядерные. Потомками прокариотических клеток являются органеллы , постоянные компоненты клетки, жизненно необходимые для её существования, располагаются в её внутренней части — цитоплазме. К прокариотам относятся бактерии и археи. Согласно наиболее распространённым гипотезам, эукариоты появились 1,5—2 млрд лет назад.
Митохондрия - это двумембранная гранулярная или нитевидная органелла толщиной около 0,5 мкм. Характерна для большинства эукариотических клеток (фототсинтезирующие растения, грибы, животные). Важную роль в эволюции эукариот сыграл симбиогенез . Митохондрии — это потомки аэробных бактерий (прокариот), поселившихся некогда в предковой эукариотической клетке и «научившихся» жить в ней в качестве симбионтов. Теперь митохондрии есть почти во всех эукариотических клетках, размножаться вне клетки они уже не способны. Фото

Впервые митохондрии обнаружены в виде гранул в мышечных клетках в 1850 году. Число митохондрий в клетке непостоянно. Их особенно много в клетках, в которых потребность в кислороде велика . По своему строению они представляют собой цилиндрические органеллы, встречающиеся в эукариотической клетке в количестве от нескольких сот до 1—2 тысяч и занимающие 10—20 % её внутреннего объёма. Сильно варьируют размеры (от 1 до 70 мкм) и форма митохондрий. При этом ширина этих органелл относительно постоянна (0,5—1 мкм). Способны изменять форму. В зависимости от того, в каких участках клетки в каждый конкретный момент происходит повышенное потребление энергии, митохондрии способны перемещаться по цитоплазме в зоны наибольшего энергопотребления, используя для движения структуры цитоскелета эукариотической клетки.
Макромолекула ДНК (Дезоксиробонуклеиновая кислота ), обеспечивающая хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов находится в ядре клетки, в составе хромосом. В отличие от ядерной ДНК митохондрии имеют свою ДНК. Гены, закодированные в митохондриальной ДНК , относятся к группе плазмагенов, расположенных вне ядра (вне хромосомы). Совокупность этих факторов наследственности, сосредоточенных в цитоплазме клетки, составляет плазмон данного вида организмов (в отличие от генома).
Находящаяся в матриксе митохондриальная ДНК представляет собой замкнутую кольцевую двуспиральную молекулу, в клетках человека имеющую размер 16569 нуклеотидных пар, что приблизительно в 105 раз меньше ДНК, локализованной в ядре.
Митохондриальная ДНК реплицируется в интерфазе, что частично синхронизировано с репликацией ДНК в ядре. Во время же клеточного цикла митохондрии делятся надвое путём перетяжки, образование которой начинается с кольцевой бороздки на внутренней митохондриальной мембране. Имея собственный генетический аппарат, митохондрия обладает и собственной белоксинтезирующей системой, особенностью которой в клетках животных и грибов являются очень маленькие рибосомы. Фото

Функции митохондрий и энергообразование.
Основной функцией митохондрий является синтез АТФ (аденозин трифосфат) — универсальной формы химической энергии в любой живой клетке.
Главная роль АТФ в организме связана с обеспечением энергией многочисленных биохимических реакций. АТФ служит непосредственным источником энергии для множества энергозатратных биохимических и физиологических процессов. Всё это реакции синтеза сложных веществ в организме: осуществление активного переноса молекул через биологические мембраны, в том числе и для создания трансмембранного электрического потенциала; осуществления мышечного сокращения. Также известна роль АТФ в качестве медиатора в синапсах и сигнального вещества в других межклеточных взаимодействиях (пуринергическая передача сигнала между клетками в самых разных тканях и органах, а её нарушения нередко ассоциированы с различными заболеваниями).

АТФ является универсальным аккумулятором энергии в живой природе.
Молекула АТФ (аденозин трифосфат) является универсальным источником энергии, обеспечивая не только работу мышц, но и протекание многих других биологических процессов, включая и рост мышечной массы (анаболизм).
Молекула АТФ состоит из аденина, рибозы и трех фосфатов. Процесс синтеза АТФ, это отдельная тема, опишу в следующей части. Важно понять следующее. Энергия высвобождается при отделении от молекулы одного из трех фосфатов и превращением АТФ в АДФ (аденозин дифосфат). При необходимости может отделяться еще один фосфорный остаток с получением АМФ (аденозин монофосфат) с повторным выбросом энергии.

Наиболее важным качеством является то, что АДФ может быстро восстанавливаться до полностью заряженной АТФ. Жизнь молекулы АТФ составляет в среднем менее одной минуты, а за сутки с этой молекулой может происходить до 3000 циклов перезарядок.

Разберемся, что происходит в митохондриях, ибо академическая наука не совсем понятно объясняет процесс проявления энергии.
В митохондриях создается разность потенциалов - напряжение.
В Википедии записано, что основная функция митохондрии — окисление органических соединений и использование освобождающейся при их распаде энергии в синтезе молекул АТФ, который происходит за счёт движения электрона по электронно-транспортной цепи белков внутренней мембраны…
Однако, сам электрон движется за счет разности потенциалов, а откуда она берется?

Далее написано: Внутренняя мембрана митохондрий образует многочисленные глубокие складки, называемые кристами. Превращение энергии, освобождающейся при перемещении электронов по дыхательной цепи, возможно только в том случае, если внутренняя мембрана митохондрий непроницаема для ионов. Это обусловлено тем, что энергия запасается в виде разницы концентраций (градиента) протонов… Перемещение протонов из матрикса в межмембранное пространство митохондрий, которое осуществляется благодаря функционированию дыхательной цепи, приводит к тому, что матрикс митохондрий защелачивается, а межмембранное пространство закисляется.
Ученые везде видят только электроны и протоны. Важно здесь понять, что протон - это положительный заряд, а электрон - отрицательный. В митохондриях за разность потенциалов отвечает положительный водород и две мембраны. Положительно заряжается межмембранное пространство и в результате оно закисляется, а матрикс защелачивается отрицательными зарядами. Четкая разность потенциалов. Создается напряжение. Но ясности больше не стало, как возникло оно?!
Если к данному процессу подойти, используя концепцию Трех Сил, которые четко прослеживаются в законе Ома, нам станет ясно, что для создания разности потенциалов необходим пусковой ток: U = I x R (I = U / R ). Применительно к процессу синтеза АТФ мы наблюдаем сопротивление внутренней мембраны митахондрии и разность потенциалов в матриксе и межмембранном пространстве. А где же пусковой ток , та утверждающая, кардинальная сила, которая дает энергопотенциал и приводит в движение тот пресловутый электрон? Где источник?
В пору вспомнить о боге, да не всуе. А кто вдохнул жизнь во все живое? Ведь человек не гальваническая батарейка и процессы в нем идут не сугубо электрические. Процессы в человеке антиэнтропийные - развитие, рост, процветание, а не деградация, распад и умирание.
Продолжение следует.

Универсальный биологический аккумулятор энергии. Световая энергия Солнца и энергия, заключенная в потребляемой пище, запасается в молекулах АТФ. Запас АТФ в клетке невелик. Так, в мышце запаса АТФ хватает на 20-30 сокращений. При усиленной, но кратковременной работе мышцы работают исключительно за счет расщепления содержащейся в них АТФ. После окончания работы человек усиленно дышит - в этот период происходит расщепление углеводов и других веществ (происходит накопление энергии) и запас АТФ в клетках восстанавливается.

18. КЛЕТКА

ЭУКАРИОТЫ (эвкариоты) (от греч. eu - хорошо, полностью и karyon - ядро), организмы (все, кроме бактерий, включая цианобактерии), обладающие, в отличие от прокариот, оформленным клеточным ядром, отграниченным от цитоплазмы ядерной оболочкой. Генетический материал заключен в хромосомах. Клетки эукариоты имеют митохондрии, пластиды и другие органоиды. Характерен половой процесс.

19. КЛЕТКА , элементарная живая система, основа строения и жизнедеятельности всех животных и растений. Клетки существуют как самостоятельные организмы (напр., простейшие, бактерии) и в составе многоклеточных организмов, в которых имеются половые клетки, служащие для размножения, и клетки тела (соматические), различные по строению и функциям (напр., нервные, костные, мышечные, секреторные). Размеры клетки варьируют в пределах от 0,1-0,25 мкм (некоторые бактерии) до 155 мм (яйцо страуса в скорлупе).

У человека в организме новорожденного ок. 2·1012. В каждой клетке различают 2 основные части: ядро и цитоплазму, в которой находятся органоиды и включения. Клетки растений, как правило, покрыты твердой оболочкой. Наука о клетке - цитология.

ПРОКАРИОТЫ (от лат. pro - вперед, вместо и греч. karyon - ядро), организмы, не обладающие, в отличие от эукариот, оформленным клеточным ядром. Генетический материал в виде кольцевой цепи ДНК лежит свободно в нуклеотиде и не образует настоящих хромосом. Типичный половой процесс отсутствует. К прокариотам относятся бактерии, в т. ч. цианобактерии (сине-зеленые водоросли). В системе органического мира прокариоты составляют надцарство.

20. ПЛАЗМАТИЧЕСКАЯ МЕМБРАНА (клеточная мембрана, плазмалемма), биологическая мембрана, окружающая протоплазму растительных и животных клеток. Участвует в регуляции обмена веществ между клеткой и окружающей ее средой.

21. КЛЕТОЧНЫЕ ВКЛЮЧЕНИЯ - скопления запасных питательных веществ: белков, жиров и углеводов.

22. ГОЛЬДЖИ АППАРТ (Гольджи комплекс) (по имени К. Гольджи), органоид клетки, участвующий в формировании продуктов ее жизнедеятельности (различных секретов, коллагена, гликогена, липидов и др.), в синтезе гликопротеидов.

23 ЛИЗОСОМЫ (от лиз. и греч. soma - тело), клеточные структуры, содержащие ферменты, способные расщеплять (лизировать) белки, нуклеиновые кислоты, полисахариды. Участвуют во внутриклеточном переваривании веществ, поступающих в клетку путем фагоцитоза и пиноцитоза.

24. МИТОХОНДРИЙ окружены наружной мембраной и, следовательно, уже являются компартментом, будучи отделенными от окружающей цитоплазмы; кроме того, внутреннее пространство митохондрий также подразделено на два компартмента с помощью внутренней мембраны. Наружная мембрана митохондрий очень похожа по составу на мембраны эндоплазматической сети; внутренняя мембрана митохондрий, образующая складки (кристы), очень богата белками - пожалуй, эта одна из самых насыщенных белками мембран в клетке; среди них белки «дыхательной цепи», отвечающие за перенос электронов; белки-переносчики для АДФ, АТФ, кислорода, СО у некоторых органических молекул и ионов. Продукты гликолиза, поступающие в митохондрии из цитоплазмы, окисляются во внутреннем отсеке митохондрий.

Белки, отвечающие за перенос электронов, расположены в мембране так, что в процессе переноса электронов протоны выбрасываются по одну сторону мембраны - они попадают в пространство между наружной и внутренней мембраной и накапливаются там. Это приводит к возникновению электрохимического потенциала (вследствие разницы в концентрации и зарядах). Эта разница поддерживается благодаря важнейшему свойству внутренней мембраны митохондрии - она непроницаема для протонов. То есть при обычных условиях сами по себе протоны пройти сквозь эту мембрану не могут. Но в ней имеются особые белки, точнее белковые комплексы, состоящие из многих белков и формирующие канал для протонов. Протоны проходят через этот канал под действием движущей силы электрохимического градиента. Энергия этого процесса используется ферментом, содержащимся в тех же самых белковых комплексах и способным присоединить фосфатную группу к аденозиндифосфату (АДФ), что и приводит к синтезу АТФ.

Митохондрия, таким образом, исполняет в клетке роль «энергетической станции». Принцип образования АТФ в хлоропластах клеток растений в общем тот же - использование протонного градиента и преобразование энергии электрохимического градиента в энергию химических связей.

25. ПЛАСТИДЫ (от греч. plastos - вылепленный), цитоплазматические органоиды растительных клеток. Нередко содержат пигменты, обусловливающие окраску пластиды. У высших растений зеленые пластиды - хлоропласты, бесцветные - лейкопласты, различно окрашенные - хромопласты; у большинства водорослей пластиды называют хроматофорами.

26. ЯДРО - наиболее важная часть клетки. Оно покрыто двух­мембранной оболочкой с порами, через которые одни вещества про­никают в ядро, а другие поступают в цитоплазму. Хромосомы - ос­новные структуры ядра, носители наследственной информации о при­знаках организма. Она передается в процессе деления материнской клетки дочерним клеткам, а с по­ловыми клетками - дочерним ор­ганизмам. Ядро - место синтеза ДНК, иРНК. рРНК.

28. ФАЗЫ МИТОЗА (профаза, мета-фаза, анафаза, телофаза) - ряд по­следовательных изменений в клет­ке: а) спирализация хромосом, растворение ядерной оболочки и ядрышка; б) формирование верете­на деления, расположение хромо­сом в центре клетки, присоедине­ние к ним нитей веретена деления;в) расхождение хроматид к проти­воположным полюсам клетки (они становятся хромосомами);

г) формирование клеточной пере­городки, деление цитоплазмы и ее органоидов, образование ядерной оболочки, появление двух клеток из одной с одинаковым набором хромосом (по 46 в материнской и дочерних клетках человека).

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама