THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

В процессе биохимических превращений веществ происходит разрыв химических связей, сопровождающийся выделением энергии. Это свободная, потенциальная энергия, которая не может непосредственно использоваться живыми организмами. Она должна быть преобразована. Существует две универсальной формы энергии,которые могут быть использованы в клетке для выполнения разного рода работ:

1) Химическая энергия, энергия макроэргических связей химических соединений. Химические связи называют макроэргическими в том случае, если при их разрыве высвобождается большое количество свободной энергии. Соединения имеющие такие связи-макроэргические. Молекула АТФ имеет макроэргические связи.Обладает определенными свойствами, которые обуславливают ее важную роль в энергетическом метаболизме клеток:

· Термодинамическая нестабильность;

· Высокая химическая стабильность. Обеспечивает эффективное сохранении энергии, т.к препятствует рассеиванию энергии в виде тепла;

· Малые размеры молекулы АТФ позволяют легко диффундировать в различные участки клетки, где необходим подвод энергии извне для выполнения химической, осмотической или химической работы;

· Изменение свободной энергии при гидролизе АТФ имеет среднее значение, что и позволяет ему наилучшим образом выполнять энергетические функции, т.е переносить энергию от высокоэнергетических к низкоэнергетическим соединениям.

АТФ является универсальным аккумулятором энергии для всех живых организмов, в молекулах АТФ энергия хранится очень не долго (продолжительность жизни АТФ-1/3 часть секунды). Тут же расходуется на обеспечение энергии всех протекающих в данный момент процессов.Энергия, заключенная в молекуле АТФ, может использоваться в реакциях, протекающих в цитоплазме (вбольшинстве биосинтезов, а так же в некоторых мембранозависимых процессах).

2) Электрохимическая энергия (энергия трансмембранного потенциала водорода)Δ . При переносе электронов по окислительно-восстановительной цепи, в локализованных мембранах определенного типа, называемых энергообразующимиили сопрягающими, происходит неравномерное распределение протонов в пространстве по обе стороны мембраны, т.е на мембране возникает ориентированный поперек, или трансмембранный градиент водорода Δ , измеряемый в вольтах.Разрядка образующегося Δ приводит к синтезу молекул АТФ. Энергия в форме Δ может использоваться в различных энергозависимых процессах, локализованных на мембране:



· Для поглощения ДНК в процессе генетической трансформации;

· Для переноса белков через мембрану;

· Для обеспечения движения многих прокариот;

· Для обеспечения активного транспорта молекул и ионов через цитоплазматическую мембрану.

Не вся свободная энергия, полученная при окислении веществ, переводится в доступную для клетки форму и аккумулируется в АТФ. Часть образовавшейся свободной энергии рассеивается в виде тепловой, реже световой и электрической энергии. Если клетка запасает энергию больше, чем может истратить на все энергопотребляющие процессы, она синтезирует большое количество высокомолекулярных запасных веществ (липиды). При необходимости эти вещества подвергаются биохимическим превращениям и снабжают клетку энергией.

АТФ - универсальная энергетическая «валюта» клетки. Одно из наиболее удивительных «изобретений» природы - это молекулы так называемых «макроэргических» веществ, в химической структуре которых имеется одна или несколько связей, которые выполняют функцию накопителей энергии. В живой природе найдено несколько подобных молекул, но в организме человека встречается только одна из них - аденозинтрифосфорная кислота (АТФ). Это довольно сложная органическая молекула, к которой присоединены 3 отрицательно заряженных остатка неорганической фосфорной кислоты PO. Именно эти фосфорные остатки связаны с органической частью молекулы «макроэргическими» связями, легко разрушающимися при разнообразных внутриклеточных реакциях. Однако энергия этих связей не рассеивается в пространстве в виде тепла, а используется на движение или химическое взаимодействие других молекул. Именно благодаря этому свойству АТФ выполняет в клетке функцию универсального накопителя (аккумулятора) энергии, а также универсальной «валюты». Ведь почти каждое химическое превращение, происходящее в клетке, либо поглощает, либо высвобождает энергию. Согласно закону сохранения энергии, общее количество энергии, образованное в результате окислительных реакций и запасенное в виде АТФ, равно количеству энергии, которое может использовать клетка на свои синтетические процессы и выполнение любых функций. В качестве «оплаты» за возможность произвести то или иное действие клетка вынуждена расходовать свой запас АТФ. При этом следует особо подчеркнуть: молекула АТФ столь крупна, что она не способна проходить через клеточную мембрану. Поэтому АТФ, образованная в одной клетке, не может быть использована Другой клеткой. Каждая клетка тела вынуждена синтезировать АТФ Для своих нужд самостоятельно в тех количествах, в которых она необходима для выполнения ее функций.

Три источника ресинтеза АТФ в клетках организма человека. По-видимому, далекие предки клеток человеческого организма существовали много миллионов лет назад в окружении растительных клеток, которые в избытке снабжали их углеводами, причем кислорода было недостаточно или не было еще вовсе. Именно углеводы - наиболее употребимая для производства энергии в организме составная часть питательных веществ. И хотя большинство клеток человеческого тела приобрело способность использовать в качестве энергетического сырья также белки и жиры, некоторые (например, нервные, красные кровяные, мужские половые) клетки способны производить энергию только за счет окисления углеводов.

Процессы первичного окисления углеводов - вернее, глюкозы, которая и составляет, собственно, основной субстрат окисления в клетках, - происходят непосредственно в цитоплазме: именно там расположены ферментные комплексы, благодаря которым молекула глюкозы частично разрушается, а освободившаяся энергия запасается в виде АТФ. Этот процесс называется гликолиз, он может проходить во всех без исключения клетках организма человека. В результате этой реакции из одной 6-углеродной молекулы глюкозы образуется две 3-углеродные молекулы пировиноградной кислоты и две молекулы АТФ.

Гликолиз - весьма быстрый, но сравнительно малоэффективный процесс. Образовавшаяся в клетке после завершения реакций гликолиза пировиноградная кислота почти тут же превращается в молочную кислоту и порой (например, во время тяжелой мышечной работы) в весьма больших количествах выходит в кровь, так как это небольшая молекула, способная свободно проходить через клеточную мембрану. Такой массированный выход кислых продуктов обмена в кровь нарушает гомеостаз, и организму приходится включать специальные гомеостатические механизмы, чтобы справиться с последствиями мышечной работы или другого активного действия.

Образовавшаяся в результате гликолиза пировиноградная кислота содержит в себе еще много потенциальной химической энергии и может служить субстратом для дальнейшего окисления, но для этого нужны специальные ферменты и кислород. Этот процесс происходит во многих клетках, в которых содержатся специальные органеллы - митохондрии. Внутренняя поверхность мембран митохондрий сложена из крупных липидных и белковых молекул, среди которых большое количество окислительных ферментов. Внутрь митохондрии проникают образовавшиеся в цитоплазме 3-углеродные молекулы - обычно это бывает уксусная кислота (ацетат). Там они включаются в непрерывно идущий цикл реакций, в процессе которых от этих органических молекул поочередно отщепляются атомы углерода и водорода, которые, соединяясь с кислородом, превращаются в углекислый газ и воду. В этих реакциях выделяется большое количество энергии, которая запасается в виде АТФ. Каждая молекула пировиноградной кислоты, пройдя полный цикл окисления в митохондрии, позволяет клетке получить 17 молекул АТФ. Таким образом, полное окисление 1 молекулы глюкозы обеспечивает клетку 2+17x2 = 36 молекулами АТФ. Не менее важно, что в процесс митохондриального окисления могут включаться также жирные кислоты и аминокислоты, т. е. составляющие жиров и белков. Благодаря этой способности митохондрии делают клетку сравнительно независимой от того, какими продуктами питается организм: в любом случае необходимое количество энергии будет добыто.

Некоторая часть энергии запасается в клетке в виде более мелкой и подвижной, чем АТФ, молекулы креатинфосфата (КрФ). Именно эта маленькая молекула может быстро переместиться из одного конца клетки в другой - туда, где в данный момент более всего нужна энергия. КрФ не может сам отдавать энергию на процессы синтеза, мышечного сокращения или проведение нервного импульса: для этого требуется АТФ. Но зато КрФ легко и практически без потерь способен отдать всю заключенную в нем энергию молекуле аденазиндифосфата (АДФ), которая сразу же превращается в АТФ и готова к дальнейшим биохимическим превращениям.

Таким образом, затраченная в ходе функционирования клетки энергия, т.е. АТФ, может возобновляться за счет трех основных процессов: анаэробного (бескислородного) гликолиза, аэробного (с участием кислорода) митохондриального окисления, а также благодаря передаче фосфатной группы от КрФ к АДФ.

Креатинфосфатный источник - самый мощный, поскольку реакция КрФ с АДФ протекает очень быстро. Однако запас КрФ в клетке обычно невелик - например, мышцы могут с максимальным усилием работать за счет КрФ не более 6-7 с. Этого обычно достаточно, чтобы запустить второй по мощности - гликолитический - источник энергии. В этом случае ресурс питательных веществ во много раз больше, но по мере работы происходит все большее напряжение гомеостаза из-за образования молочной кислоты, и если такую работу выполняют крупные мышцы, она не может продолжаться более 1,5-2 мин. Зато за это время почти полностью активируются митохондрии, которые способны сжигать не только глюкозу, но также жирные кислоты, запас которых в организме почти неисчерпаем. Поэтому аэробный митохондриальный источник может работать очень долго, правда, мощность его сравнительно невелика - в 2-3 раза меньше, чем гликолитического источника, и в 5 раз меньше мощности креатинфосфатного.

Особенности организации энергопродукции в различных тканях организма. Разные ткани обладают различной насыщенностью митохондриями. Меньше всего их в костях и белом жире, больше всего - в буром жире, печени и почках. Довольно много митохондрий в нервных клетках. Мышцы не обладают высокой концентрацией митохондрий, но ввиду того, что скелетные мышцы - самая массивная ткань организма (около 40 % от массы тела взрослого человека), именно потребности мышечных клеток во многом определяют интенсивность и направленность всех процессов энергетического обмена. И.А.Аршавский называл это «энергетическим правилом скелетных мышц».

С возрастом происходит изменение сразу двух важных составляющих энергетического обмена: изменяется соотношение масс тканей, обладающих разной метаболической активностью, а также содержание в этих тканях важнейших окислительных ферментов. В результате энергетический обмен претерпевает достаточно сложные изменения, но в целом его интенсивность с возрастом снижается, причем весьма существенно.

Обмен веществ (метаболизм) - это совокупность всех химических реакций, которые происходят в организме. Все эти реакции делятся на 2 группы


1. Пластический обмен (ассимиляция, анаболизм, биосинтез) - это когда из простых веществ с затратой энергии образуются (синтезируются) более сложные. Пример:

  • При фотосинтезе из углекислого газа и воды синтезируется глюкоза.

2. Энергетический обмен (диссимиляция, катаболизм, дыхание) - это когда сложные вещества распадаются (окисляются) до более простых, и при этом выделяется энергия , необходимая для жизнедеятельности. Пример:

  • В митохондриях глюкоза, аминокислоты и жирные кислоты окисляются кислородом до углекислого газа и воды, при этом образуется энергия (клеточное дыхание)

Взаимосвязь пластического и энергетического обмена

  • Пластический обмен обеспечивает клетку сложными органическими веществами (белками, жирами, углеводами, нуклеиновыми кислотами), в том числе белками-ферментами для энергетического обмена.
  • Энергетический обмен обеспечивает клетку энергией. При выполнении работы (умственной, мышечной и т.п.) энергетический обмен усиливается.

АТФ – универсальное энергетическое вещество клетки (универсальный аккумулятор энергии). Образуется в процессе энергетического обмена (окисления органических веществ).

  • При энергетическом обмене все вещества распадаются, а АТФ - синтезируется. При этом энергия химических связей распавшихся сложных веществ переходит в энергию АТФ, энергия запасается в АТФ .
  • При пластическом обмене все вещества синтезируются, а АТФ - распадается. При этом расходуется энергия АТФ (энергия АТФ переходит в энергию химических связей сложных веществ, запасается в этих веществах).

Выберите один, наиболее правильный вариант. В процессе пластического обмена
1) более сложные углеводы синтезируются из менее сложных
2) жиры превращаются в глицерин и жирные кислоты
3) белки окисляются с образованием углекислого газа, воды, азотсодержащих веществ
4) происходит освобождение энергии и синтез АТФ

Ответ


Выберите три варианта. Чем пластический обмен отличается от энергетического?
1) энергия запасается в молекулах АТФ
2) запасенная в молекулах АТФ энергия расходуется
3) органические вещества синтезируются
4) происходит расщепление органических веществ
5) конечные продукты обмена - углекислый газ и вода
6) в результате реакций обмена образуются белки

Ответ


Выберите один, наиболее правильный вариант. В процессе пластического обмена в клетках синтезируются молекулы
1) белков
2) воды
3) АТФ
4) неорганических веществ

Ответ


Выберите один, наиболее правильный вариант. В чем проявляется взаимосвязь пластического и энергетического обмена
1) пластический обмен поставляет органические вещества для энергетического
2) энергетический обмен поставляет кислород для пластического
3) пластический обмен поставляет минеральные вещества для энергетического
4) пластический обмен поставляет молекулы АТФ для энергетического

Ответ


Выберите один, наиболее правильный вариант. В процессе энергетического обмена, в отличие от пластического, происходит
1) расходование энергии, заключенной в молекулах АТФ
2) запасание энергии в макроэргических связях молекул АТФ
3) обеспечение клеток белками и липидами
4) обеспечение клеток углеводами и нуклеиновыми кислотами

Ответ


1. Установите соответствие между характеристикой обмена и его видом: 1) пластический, 2) энергетический. Запишите цифры 1 и 2 в правильном порядке.
А) окисление органических веществ
Б) образование полимеров из мономеров
В) расщепление АТФ
Г) запасание энергии в клетке
Д) репликация ДНК
Е) окислительное фосфорилирование

Ответ


2. Установите соответствие между характеристикой обмена веществ в клетке и его видом: 1) энергетический, 2) пластический. Запишите цифры 1 и 2 в порядке, соответствующим буквам.
А) происходит бескислородное расщепление глюкозы
Б) происходит на рибосомах, в хлоропластах
В) конечные продукты обмена – углекислый газ и вода
Г) органические вещества синтезируются
Д) используется энергия, заключенная в молекулах АТФ
Е) освобождается энергия и запасается в молекулах АТФ

Ответ


3. Установите соответствие между признаками обмена веществ у человека и его видами: 1) пластический обмен, 2) энергетический обмен. Запишите цифры 1 и 2 в правильном порядке.
А) вещества окисляются
Б) вещества синтезируются
В) энергия запасается в молекулах АТФ
Г) энергия расходуется
Д) в процессе участвуют рибосомы
Е) в процессе участвуют митохондрии

Ответ


4. Установите соответствие между характеристиками обмена веществ и его видом: 1) энергетический, 2) пластический. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) репликация ДНК
Б) биосинтез белка
В) окисление органических веществ
Г) транскрипция
Д) синтез АТФ
Е) хемосинтез

Ответ


5. Установите соответствие между характеристиками и видами обмена: 1) пластический, 2) энергетический. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) запасается энергия в молекулах АТФ
Б) синтезируются биополимеры
В) образуются углекислый газ и вода
Г) происходит окислительное фосфорилирование
Д) происходит репликация ДНК

Ответ


Выберите три процесса, относящихся к энергетическому обмену веществ.
1) выделение кислорода в атмосферу
2) образование углекислого газа, воды, мочевины
3) окислительное фосфорилирование
4) синтез глюкозы
5) гликолиз
6) фотолиз воды

Ответ


Выберите один, наиболее правильный вариант. Энергия, необходимая для мышечного сокращения, освобождается при
1) расщеплении органических веществ в органах пищеварения
2) раздражении мышцы нервными импульсами
3) окислении органических веществ в мышцах
4) синтезе АТФ

Ответ


Выберите один, наиболее правильный вариант. В результате какого процесса в клетке синтезируются липиды?
1) диссимиляции
2) биологического окисления
3) пластического обмена
4) гликолиза

Ответ


Выберите один, наиболее правильный вариант. Значение пластического обмена – снабжение организма
1) минеральными солями
2) кислородом
3) биополимерами
4) энергией

Ответ


Выберите один, наиболее правильный вариант. Окисление органических веществ в организме человека происходит в
1) легочных пузырьках при дыхании
2) клетках тела в процессе пластического обмена
3) процессе переваривания пищи в пищеварительном тракте
4) клетках тела в процессе энергетического обмена

Ответ


Выберите один, наиболее правильный вариант. Какие реакции обмена веществ в клетке сопровождаются затратами энергии?
1) подготовительного этапа энергетического обмена
2) молочнокислого брожения
3) окисления органических веществ
4) пластического обмена

Ответ


1. Установите соответствие между процессами и составляющими частями метаболизма: 1) анаболизм (ассимиляция), 2) катаболизм (диссимиляция). Запишите цифры 1 и 2 в правильном порядке.
А) брожение
Б) гликолиз
В) дыхание
Г) синтез белка
Д) фотосинтез
Е) хемосинтез

Ответ


2. Установите соответствие между характеристиками и процессами обмена веществ: 1) ассимиляция (анаболизм), 2) диссимиляция (катаболизм). Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) синтез органических веществ организма
Б) включает подготовительный этап, гликолиз и окислительное фосфорилирование
В) освобожденная энергия запасается в АТФ
Г) образуются вода и углекислый газ
Д) требует энергетических затрат
Е) происходит в хлоропластах и на рибосомах

Ответ


Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Обмен веществ – одно из основных свойств живых систем, он характеризуется тем, что происходит
1) избирательное реагирование на внешние воздействия окружающей среды
2) изменение интенсивности физиологических процессов и функций с различными периодами колебаний
3) передача из поколения в поколение признаков и свойств
4) поглощение необходимых веществ и выделение продуктов жизнедеятельности
5) поддержание относительно-постоянного физико-химического состава внутренней среды

Ответ


1. Все приведенные ниже термины, кроме двух, используются для описания пластического обмена. Определите два термина, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) репликация
2) дупликация
3) трансляция
4) транслокация
5) транскрипция

Ответ


2. Все перечисленные ниже понятия, кроме двух, используют для описания пластического обмена веществ в клетке. Определите два понятия, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) ассимиляция
2) диссимиляция
3) гликолиз
4) транскрипция
5) трансляция

Ответ


3. Перечисленные ниже термины, кроме двух, используются для характеристики пластического обмена. Определите два термина, выпадающих из общего списка, и запишите цифры, под которыми они указаны.
1) расщепление
2) окисление
3) репликация
4) транскрипция
5) хемосинтез

Ответ


Выберите один, наиболее правильный вариант. Азотистое основание аденин, рибоза и три остатка фосфорной кислоты входят в состав
1) ДНК
2) РНК
3) АТФ
4) белка

Ответ


Все приведённые ниже признаки, кроме двух, можно использовать для характеристики энергетического обмена в клетке. Определите два признака, «выпадающих» из общего списка, и запишите в ответ цифры, под которыми они указаны.
1) идёт с поглощением энергии
2) завершается в митохондриях
3) завершается в рибосомах
4) сопровождается синтезом молекул АТФ
5) завершается образованием углекислого газа

Ответ


Найдите три ошибки в приведенном тексте. Укажите номера предложений, в которых они сделаны. (1) Обмен веществ, или метаболизм, – это совокупность реакций синтеза и распада веществ клетки и организма, связанных с выделением или поглощением энергии. (2) Совокупность реакций синтеза высокомолекулярных органических соединений из низкомолекулярных соединений относят к пластическому обмену. (3) В реакциях пластического обмена синтезируются молекулы АТФ. (4) Фотосинтез относят к энергетическому обмену. (5) В результате хемосинтеза синтезируются органические вещества из неорганических за счет энергии Солнца.

Ответ

© Д.В.Поздняков, 2009-2019

АТФ - универсальный накопитель биологической энергии. Ее роль для всего живого была сформулирована академиком АМН СССР В. А. Энгельгардтом в 1940 г. следующим образом: «Любой клеточный накопитель энергии образует АТФ, любой расход энергии в клетке оплачивается АТФ». Это правило справедливо и для мышечных клеток и клеток мозга, где энергия накапливается дополнительно.

В китайской традиции существует понятие четырех биграмм или четырех фундаментальных энергий : трансцендентная энергия , энергия начала, о ней никогда не говорится в книгах, поскольку, она вездесуща и без нее ничего бы не существовало; ...

Молекула АТФ содержит три остатка фосфорной кислоты. Связи между ними (в присутствии фермента АТФазы) легко разрываемы. При отщеплении от одной молекулы АТФ одной молекулы фосфорной кислоты выделяется 40 кДж энергии, поэтому связи называют макроэргическими (несущими большое количество энергии).

Преобразование химически связанной в АТФ энергии в механическую (необходимую для осуществления мышечного сокращения), электрическую, световую, звуковую энергию осмоса и другие ее виды, обеспечивающие синтез пластических веществ в клетке, рост , развитие , возможность передачи наследственных признаков, осуществляется в головке элементарных частиц дыхательных ансамблей благодаря присутствию в них, т. е. в тех же частицах, где происходит ее синтез. Выделяющаяся при распаде АТФ энергия непосредственно переходит в биологическую, необходимую для синтеза белков, нуклеотидов и других органических соединений, без которого рост и развитие организма невозможны. Запасы энергии в АТФ используются для осуществления движений, генерации электричества, света, для выполнения любой функции клетки и ее органелл.

Запасы АТФ в клетке ограничены. В мышечных волокнах они могут обеспечить энергией всего лишь 30-40 сокращений, а в клетках других тканей их еще меньше. Для пополнения запасов АТФ должен постоянно происходить ее синтез - из (АДФ) и неорганического фосфата, который осуществляется с участием фермента АТФсинтетазы. Поэтому большое значение для управления процессом синтеза АТФ имеет соотношение между концентрациями АТФ и АДФ (активностью АТФсинтетазы). При недостатке АДФ благодаря наличию АТФазы в активном центре будет ускоряться гидролиз АТФ, который, как отмечалось, связан с процессом окислительного, зависит от состояния переносчиков водорода и кислорода.

Чем больше НАД и меньше восстановленной его формы, чем больше окисленного цитохрома с и АДФ, тем скорость синтеза АТФ выше. Наряду с другими ферментами и коферментами в качестве основных регуляторов работы дыхательных ансамблей выступают на первом этапе переноса водорода от субстрата НАД - НАД на втором - переносчик электронов на кислород , цитохромы, и на заключительном этапе - соотношение между АТФ и АДФ.

Универсальный биологический аккумулятор энергии. Световая энергия Солнца и энергия, заключенная в потребляемой пище, запасается в молекулах АТФ. Запас АТФ в клетке невелик. Так, в мышце запаса АТФ хватает на 20-30 сокращений. При усиленной, но кратковременной работе мышцы работают исключительно за счет расщепления содержащейся в них АТФ. После окончания работы человек усиленно дышит - в этот период происходит расщепление углеводов и других веществ (происходит накопление энергии) и запас АТФ в клетках восстанавливается.

18. КЛЕТКА

ЭУКАРИОТЫ (эвкариоты) (от греч. eu - хорошо, полностью и karyon - ядро), организмы (все, кроме бактерий, включая цианобактерии), обладающие, в отличие от прокариот, оформленным клеточным ядром, отграниченным от цитоплазмы ядерной оболочкой. Генетический материал заключен в хромосомах. Клетки эукариоты имеют митохондрии, пластиды и другие органоиды. Характерен половой процесс.

19. КЛЕТКА , элементарная живая система, основа строения и жизнедеятельности всех животных и растений. Клетки существуют как самостоятельные организмы (напр., простейшие, бактерии) и в составе многоклеточных организмов, в которых имеются половые клетки, служащие для размножения, и клетки тела (соматические), различные по строению и функциям (напр., нервные, костные, мышечные, секреторные). Размеры клетки варьируют в пределах от 0,1-0,25 мкм (некоторые бактерии) до 155 мм (яйцо страуса в скорлупе).

У человека в организме новорожденного ок. 2·1012. В каждой клетке различают 2 основные части: ядро и цитоплазму, в которой находятся органоиды и включения. Клетки растений, как правило, покрыты твердой оболочкой. Наука о клетке - цитология.

ПРОКАРИОТЫ (от лат. pro - вперед, вместо и греч. karyon - ядро), организмы, не обладающие, в отличие от эукариот, оформленным клеточным ядром. Генетический материал в виде кольцевой цепи ДНК лежит свободно в нуклеотиде и не образует настоящих хромосом. Типичный половой процесс отсутствует. К прокариотам относятся бактерии, в т. ч. цианобактерии (сине-зеленые водоросли). В системе органического мира прокариоты составляют надцарство.

20. ПЛАЗМАТИЧЕСКАЯ МЕМБРАНА (клеточная мембрана, плазмалемма), биологическая мембрана, окружающая протоплазму растительных и животных клеток. Участвует в регуляции обмена веществ между клеткой и окружающей ее средой.

21. КЛЕТОЧНЫЕ ВКЛЮЧЕНИЯ - скопления запасных питательных веществ: белков, жиров и углеводов.

22. ГОЛЬДЖИ АППАРТ (Гольджи комплекс) (по имени К. Гольджи), органоид клетки, участвующий в формировании продуктов ее жизнедеятельности (различных секретов, коллагена, гликогена, липидов и др.), в синтезе гликопротеидов.

23 ЛИЗОСОМЫ (от лиз. и греч. soma - тело), клеточные структуры, содержащие ферменты, способные расщеплять (лизировать) белки, нуклеиновые кислоты, полисахариды. Участвуют во внутриклеточном переваривании веществ, поступающих в клетку путем фагоцитоза и пиноцитоза.

24. МИТОХОНДРИЙ окружены наружной мембраной и, следовательно, уже являются компартментом, будучи отделенными от окружающей цитоплазмы; кроме того, внутреннее пространство митохондрий также подразделено на два компартмента с помощью внутренней мембраны. Наружная мембрана митохондрий очень похожа по составу на мембраны эндоплазматической сети; внутренняя мембрана митохондрий, образующая складки (кристы), очень богата белками - пожалуй, эта одна из самых насыщенных белками мембран в клетке; среди них белки «дыхательной цепи», отвечающие за перенос электронов; белки-переносчики для АДФ, АТФ, кислорода, СО у некоторых органических молекул и ионов. Продукты гликолиза, поступающие в митохондрии из цитоплазмы, окисляются во внутреннем отсеке митохондрий.

Белки, отвечающие за перенос электронов, расположены в мембране так, что в процессе переноса электронов протоны выбрасываются по одну сторону мембраны - они попадают в пространство между наружной и внутренней мембраной и накапливаются там. Это приводит к возникновению электрохимического потенциала (вследствие разницы в концентрации и зарядах). Эта разница поддерживается благодаря важнейшему свойству внутренней мембраны митохондрии - она непроницаема для протонов. То есть при обычных условиях сами по себе протоны пройти сквозь эту мембрану не могут. Но в ней имеются особые белки, точнее белковые комплексы, состоящие из многих белков и формирующие канал для протонов. Протоны проходят через этот канал под действием движущей силы электрохимического градиента. Энергия этого процесса используется ферментом, содержащимся в тех же самых белковых комплексах и способным присоединить фосфатную группу к аденозиндифосфату (АДФ), что и приводит к синтезу АТФ.

Митохондрия, таким образом, исполняет в клетке роль «энергетической станции». Принцип образования АТФ в хлоропластах клеток растений в общем тот же - использование протонного градиента и преобразование энергии электрохимического градиента в энергию химических связей.

25. ПЛАСТИДЫ (от греч. plastos - вылепленный), цитоплазматические органоиды растительных клеток. Нередко содержат пигменты, обусловливающие окраску пластиды. У высших растений зеленые пластиды - хлоропласты, бесцветные - лейкопласты, различно окрашенные - хромопласты; у большинства водорослей пластиды называют хроматофорами.

26. ЯДРО - наиболее важная часть клетки. Оно покрыто двух­мембранной оболочкой с порами, через которые одни вещества про­никают в ядро, а другие поступают в цитоплазму. Хромосомы - ос­новные структуры ядра, носители наследственной информации о при­знаках организма. Она передается в процессе деления материнской клетки дочерним клеткам, а с по­ловыми клетками - дочерним ор­ганизмам. Ядро - место синтеза ДНК, иРНК. рРНК.

28. ФАЗЫ МИТОЗА (профаза, мета-фаза, анафаза, телофаза) - ряд по­следовательных изменений в клет­ке: а) спирализация хромосом, растворение ядерной оболочки и ядрышка; б) формирование верете­на деления, расположение хромо­сом в центре клетки, присоедине­ние к ним нитей веретена деления;в) расхождение хроматид к проти­воположным полюсам клетки (они становятся хромосомами);

г) формирование клеточной пере­городки, деление цитоплазмы и ее органоидов, образование ядерной оболочки, появление двух клеток из одной с одинаковым набором хромосом (по 46 в материнской и дочерних клетках человека).

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама