THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Открытие закона сохранения импульса, который утверждает, что векторная сумма импульсов всех тел (или частиц) замкнутой системы есть величина постоянная, показало, что механическое движение тел имеет количественную меру, сохраняющуюся при любых взаимодействиях тел. Этой мерой является импульс. Однако только с помощью этого закона не получится дать полное объяснение всех закономерностей движения и взаимодействия тел.

Рассмотрим пример. Пуля массой 9 грамм, находящаяся в состоянии покоя, абсолютно безвредна. Но во время выстрела при соприкосновении с препятствием пуля деформирует его. Очевидно, что такой разрушительный эффект получается в результате того, что пуля обладает особой энергией.

Рассмотрим другой пример. Два одинаковых пластилиновых шара движутся навстречу друг другу с одинаковыми скоростями. При столкновении они останавливаются и соединяются в одно тело.

Сумма импульсов шаров до столкновения и после столкновения одинакова и равна нулю, закон сохранения импульсов выполняется. Что же происходит с пластилиновыми шарами при их столкновении, кроме изменения скорости движения? Шары деформируются и нагреваются.

Повышение температуры тел при столкновении можно наблюдать, например, при ударе молотка по свинцовому или медному стержню. Изменение температуры тела свидетельствует об изменениях скоростей хаотичного теплового движения атомов, из которого состоит тело. Следовательно, механическое движение не исчезло бесследно, оно превратилось в другую форму движения материи.

Вернёмся к вопросу, который мы ставили выше. Имеется ли в природе мера движения материи, сохраняющаяся при любых превращениях одной формы движения в другую? Опыты и наблюдения показали, что такая мера движения в природе существует. Её назвали энергией.

Энергией называется физическая величина, являющаяся количественной мерой различных форм движения материи.

Для точного определения энергии как физической величины необходимо найти её связь с другими величинами, выбрать единицу измерения и найти способы её измерения.

Механической энергией называется физическая величина, которая является количественной мерой механического движения.

В физике в качестве такой количественной меры поступательного механического движения при возникновении его из других форм движения или превращении в другие формы движения принята величина, равная половине произведения массы тела на квадрат скорости его движения. Эта физическая величина называется кинетической энергией тела и обозначается буквой Е с индексом к :

Е к = mv 2 / 2

Так как скорость является величиной, зависящей от выбора системы отсчёта, значение кинетической энергии тела зависит от выбора системы отсчёта.

Существуеттеорема о кинетической энергии. «Работа приложенной к телу равнодействующей силы равна изменению его кинетической энергии»:

А = Е к2 -Е к1

Данная теорема будет справедлива и когда тело движется под действием константной силы, и когда тело движется по действием изменяющейся силы, направление которой не совпадает с направлением перемещения. Кинетическая энергия – это энергия движения. Получается, кинетическая энергия тела массой m, движущегося со скоростью v равна работе, которую должна совершить сила, приложенная к покоящемуся телу, чтобы сообщить ему эту скорость:

А = mv 2 / 2 = Е к

Если тело будет двигаться со скоростью v, то для его полной остановки необходимо совершить работу:

А = -mv 2 / 2 = -Е к

За единицу работы в международной системе принимается работа, совершаемая силой 1 Ньютон на пути 1 метр при движении по направлению вектора силы. Эта единица измерения работы называется Джоулем.

1 Дж = 1 кг · м 2 / c 2

Так как работа равна изменению энергии, для измерения энергии используется та же единица измерения, что и для измерения работы. Единица энергии в СИ – 1Дж.

Остались вопросы? Не знаете, что такое кинетическая энергия?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Кинетическая и потенциальная энергии.

Кинетическая энергия тела является мерой его механического движения и определяется работой, которую необходимо совершить, чтобы вызвать данное движение тела. Если сила F действует на покоящееся тело и вызывает его движение со скоростью v, то она совершает работу, а энергия движущегося тела возрастает на величину затраченной работы. Таким образом, работа силы F на пути, который тело прошло за время возрастания скорости от 0 до v, идет на увеличение кинетической энергии тела, т. е. dA = dT.

Используя скалярную запись второго закона Ньютона F =mdv/dt и умножая обе части равенства на перемещение ds, получим

Так как

И

Таким образом, для тела массой т, движущегося со скоростью v, кинетическая энергия

Из формулы (12.1) видно, что кинетическая энергия зависит только от массы и скорости тела, т. е. кинетическая энергия системы есть функция состояния ее движения.

При выводе формулы (12.1) предполагалось, что движение рассматривается в инерциальной системе отсчета, так как иначе нельзя было бы использовать закон Ньютона. В разных инерциальных системах отсчета, движущихся друг относительно друга, скорость тела, а, следовательно, и его кинетическая энергия будут неодинаковы. Таким образом, кинетическая энергия зависит от выбора системы отсчета.

Потенциальная энергия - часть общей механической энергии системы, определяемая взаимным расположением тел и характером сил взаимодействия между ними.

Пусть взаимодействие тел осуществляется посредством силовых полей (например, поля упругих сил, поля гравитационных сил), характеризующихся тем, что работа, совершаемая действующими силами при перемещении тела из одного
положения в другое, не зависит от того, по какой траектории это перемещение произошло, а зависит только от начального и конечного положений. Такие поля называются потенциальными, а силы, действующие в них,- консервативными. Если же работа, совершаемая силой, зависит от траектории перемещения тела из одной точки в другую, то такие силы называются диссипативными; примером их являются силы трения.

Тело, находясь в потенциальном поле сил, обладает потенциальной энергией П, которая определяется с точностью до некоторой произвольной постоянной. Это, однако, не отражается на физических законах, так как в них входит или разность потенциальных энергий в двух положениях тела, или производная П по координатам. Поэтому потенциальную энергию какого-то определенного положения тела считают равной нулю (выбирают нулевой уровень отсчета), а энергию других положений отсчитывают относительно нулевого уровня.

Потенциальная энергия тела обычно определяется работой, которую совершили бы действующие на него внешние силы, преодолевающие консервативные силы взаимодействия, перемещая его из конечного состояния, где потенциальная энергия равна нулю, в данное положение. Работа консервативных сил, приложенных к телу, равна изменению потенциальной энергии этого тела, взятому с обратным знаком, т. е.

так как работа совершается за счет убыли потенциальной энергии.

Поскольку работа dA есть скалярное произведение силы F на перемещение dr, то выражение (12.2) можно записать в виде

Следовательно, если известна функция П(г), то (12.3) полностью определяет силу F по модулю и направлению. В случае консервативных сил

или в векторном виде

где символом grad П обозначена сумма

(12.5)

где i, j, k- единичные векторы координатных осей. Вектор, определяемый выражением (12.5), называется градиентом скаляра П. Для него наряду с обозначением grad П применяется также обозначение Ñ П. Ñ(«набла») означает символический вектор, называемый оператором Гамильтона или набла-оператором:

(12.6)

Конкретный вид функции П зависит от характера силового поля. Например, потенциальная энергия тела массой m, поднятого на высоту h над поверхностью Земли, равна

, (12.7)

где h - высота, отсчитанная от нулевого уровня, для которого П 0 = 0. Выражение (12.7) вытекает непосредственно из того, что потенциальная энергия равна работе силы тяжести: при падении тела с высоты h на поверхность Земли.

Так как начало отсчета выбирается произвольно, то потенциальная энергия может иметь отрицательное значение (кинетическая энергия всегда положительна!). Если принять за нуль потенциальную энергию тела, лежащего на поверхности Земли, то потенциальная энергия тела, находящегося на дне тахты (глубина h"),

Для приведения любого тела в движение обязательным условием является произведение работы . При этом, для выполнения данной работы необходимо израсходовать некоторую энергию.

Энергия характеризует тело с точки зрения возможности производить работу. Единицей измерения энергии является Джоуль , сокращенно [Дж].

Полная энергия любой механической системы эквивалентна суммарному значению потенциальной и кинетической энергии. Поэтому, принято выделять потенциальную и кинетическую энергию в качестве разновидностей механической энергии.

Если речь ведется о биомеханических системах, то полная энергия таких систем состоит дополнительно из тепловой и энергии обменных процессов.

В изолированных системах тел, когда на них действуют лишь сила тяжести и упругости, величина полной энергии неизменна. Это утверждение является законом сохранения энергии.

Что же из себя представляет и тот, и другой вид механической энергии?

О потенциальной энергии

Потенциальная энергия это энергия, определяемая взаимным положением тел, либо составляющих этих тел, взаимодействующих друг с другом. Иными словами, эта энергия определяется величиной расстояния между телами .

К примеру, когда тело падает вниз и приводит в движение окружающие тела на пути падения, сила тяжести производит положительную работу. И, наоборот, в случае поднятия тела вверх, можно говорить о производстве отрицательной работы.

Следовательно, каждое тело при нахождении на определенном расстоянии от земной поверхности обладает потенциальной энергией. Чем больше высота и масса тела, тем больше значение работы, совершаемой телом. В то же время, в первом примере, при падении тела вниз, потенциальная энергия будет отрицательной, а при поднятии потенциальная энергия положительна.

Это объясняется равенством работы силы тяжести по значению, но противоположностью по знаку изменению потенциальной энергии.

Также примером возникновения энергии взаимодействия может служить предмет, подверженный упругой деформациисжатая пружинка : при распрямлении ей будет производиться работа силы упругости. Здесь речь идет о совершении работы вследствие изменения расположения составляющих тела относительно друг друга при упругой деформации.

Подытожив информацию, отметим, что абсолютно каждый предмет, на который воздействует сила тяжести или сила упругости, будет обладать энергией разницы потенциалов.

О кинетической энергии

Кинетической является энергия, которой начинают обладать тела вследствие совершения процесса движения . Исходя из этого, кинетическая энергия тел, находящихся в покое, равняется нулю.

Величина данной энергии эквивалентна величине работы, которую нужно совершить для выведения тела из состояния покоя и заставить его, тем самым, двигаться. Иными словами, кинетическую энергию можно выразить как разницу между полной энергией и энергией покоя.

Работа поступательного движения, которую производит движущееся тело, напрямую зависит от массы и скорости в квадрате. Работа вращательного движения зависит от момента инерции и квадрата угловой скорости.

Полная энергия движущихся тел включает в себя оба вида производимой работы, ее определяют, согласно следующему выражению: . Основные характеристики кинетической энергии:

  • Аддитивность – определяет кинетическую энергию как энергию системы, состоящую из совокупности материальных точек, и равную суммарной кинетической энергии каждой точки этой системы;
  • Инвариантность относительно поворота системы отсчета — кинетическая энергия независима от положения и направления скорости точки;
  • Сохранение – характеристика указывает, что кинетическая энергия систем неизменна при любых взаимодействиях, в случаях изменения только механической характеристики.

Примеры тел, обладающих потенциальной и кинетической энергией

Все предметы, поднятые и находящиеся на некотором расстоянии от земной поверхности в неподвижном состоянии, способны обладать потенциальной энергией. Как пример, это бетонная плита, поднятая краном , которая находится в неподвижном состоянии, взведенная пружина.

Кинетическую энергию имеют движущиеся транспортные средства, а также, в целом, любой катящийся предмет.

При этом, в природе, бытовых вопросах и в технике потенциальная энергия способна переходить в кинетическую, а кинетическая, в свою очередь, наоборот, в потенциальную энергию.

Мяч , который бросают с некоторой точки на высоте: в самом верхнем положении потенциальная энергия мячика максимальна, а значение кинетической энергии равно нулю, поскольку мяч не движется и пребывает в состоянии покоя. При снижении высоты потенциальная энергия соответственно постепенно уменьшается. Когда мячик достигнет земной поверхности, то он покатится; в данный момент кинетическая энергия увеличивается, а потенциальная будет равна нулю.

Кинетическая энергия - это, согласно определению, величина, равная половине массы движущегося тела, умноженного на квадрат скорости этого тела. Это - один из важнейших терминов современной механики. Если коротко выразиться, то это энергия движения, или разность полной энергии и энергии покоя. Все же сущность ее не до конца рассмотрена в современной науке.

Кинетическая энергия (от гр. Kinema - движение) тела, находящегося в состоянии

Неподвижности, равна нулю. Нередко эту величину связывают не только с массой и скоростью. Так, согласно одному определению, кинетическая энергия - это работа, совершаемая при определенной скорости. Измеряется в джоулях.

Кинетическая энергия системы - это величина, которая тесно связана со скоростью каждой из ее точек.

Ее рассматривают как в поступательном движении, так и во вращательном. Первый случай уже был подробно разъяснен выше, это - половина массы какого-либо объекта, умноженной на его скорость в квадрате. А кинетическая энергия вращения тела представляется как сумма кинетических энергий каждого из элементарных объемов данного тела. Или как значение момента инерции, умноженное на квадрат угловой скорости, деленное на два.

Допустим, имеется какое-либо твердое тело, которое совершает движение вокруг оси

неподвижной, проходящей через него. Этот объект можем разбить на небольшие элементарные объемы, каждый из которых имеет свою элементарную массу. Вокруг неподвижной оси рассматриваемое тело совершает движения. При этом каждый из элементарных объемов описывает окружность соответствующего радиуса. Одинакова их вращения. И поэтому кинетическая энергия данного тела - это сумма кинетических энергий всех его элементарных, двигающихся вокруг оси объемов. Упрощенный вариант этой формулы - половина произведения квадрата угловой скорости и момента инерции.

В некоторых случаях кинетическая энергия - это сумма и поступательной, и вращательной энергии. Например, скатывающийся без скольжения по наклонной линии цилиндр. Двигаясь вперед, он выполняет однако, при этом он еще и двигается вокруг своей оси.

Одна из составляющих кинетической энергии вращения - это о котором выше и говорилось. Он зависит от общей массы тела, а также от ее распределения по отношению к оси вращения. Что же это такое? Это мера инертности движения вокруг оси так же, как в поступательном движении мерой инертности является масса. Это весьма важная величина. Чем момент инерции больше, тем труднее привести тело в состояние вращения. Угловая скорость характеризует то, с какой быстротой движется твердое тело вокруг своей оси. Единицей измерения является рад/с. Угловая скорость представляет собой отношение угла поворота к тому промежутку времени, за который этот угол проходит вращающийся объект.

Теорему о кинетической энергии можно сформулировать примерно так: работа силы, равнодействующей, приложенной к определенному телу, равнозначна изменению кинетической энергии данного тела.

Окружающий мир пребывает в постоянном движении. Любое тело (объект) способно выполнить определенную работу, даже если оно в состоянии покоя. Но для совершения любого процесса требуется приложить некоторые усилия , порой немалые.

В переводе с греческого языка этот термин означает «деятельность», «сила», «мощь». Все процессы на Земле и за пределами нашей планеты происходят благодаря этой силе, которой обладают окружающие объекты, тела, предметы.

Вконтакте

Среди большого разнообразия выделяют несколько основных видов данной силы, отличающихся прежде всего своими источниками:

  • механическая – данный вид характерен для движущихся в вертикальной, горизонтальной или другой плоскости тел;
  • тепловая – выделяется в результате неупорядоченного молекул в веществах;
  • – источником этого вида является движение заряженных частиц в проводниках и полупроводниках;
  • световая – переносчиком ее являются частицы света – фотоны;
  • ядерная – возникает вследствие самопроизвольного цепного деления ядер атомов тяжелых элементов.

В этой статье пойдет речь о том, что собой представляет механическая сила предметов, из чего она состоит, от чего зависит и как преобразуется во время различных процессов.

Благодаря этому виду предметы, тела могут находиться в движении либо в состоянии покоя. Возможность такой деятельности объясняется присутствием двух основных составляющих:

  • кинетической (Ек);
  • потенциальной (Еп).

Именно сумма кинетической и потенциальной энергий определяет общий численный показатель всей системы. Теперь о том, какие формулы используются для расчетов каждой из них, и в чем измеряется энергия.

Как рассчитать энергию

Кинетическая энергия – это характеристика любой системы, которая находится в движении . Но как найти кинетическую энергию?

Сделать это несложно, так как расчетная формула кинетической энергии весьма проста:

Конкретное значение определяется двумя основными параметрами: скоростью перемещения тела (V) и его массой (m). Чем больше данные характеристики, тем большей значением описываемого явления обладает система.

Но если объектом не совершаются перемещения (т.е. v = 0), то и кинетическая энергия равна нулю.

Потенциальная энергияэто характеристика, зависящая от положения и координат тел .

Любое тело подвержено земному притяжению и воздействию сил упругости. Такое взаимодействие объектов между собой наблюдается повсеместно, поэтому тела находятся в постоянном движении, меняют свои координаты.

Установлено, чем выше от поверхности земли находится предмет, чем больше его масса, тем большим показателем данной величины оно обладает .

Таким образом, зависит потенциальная энергия от массы (m) , высоты (h). Величина g – ускорение свободного падения, равное 9,81 м/сек2. Функция расчета ее количественного значения выглядит так:

Единицей измерения этой физической величины в системе СИ считается джоуль (1 Дж) . Именно столько нужно затратить сил, чтобы переместить тело на 1 метр, приложив при этом усилие в 1 ньютон.

Важно! Джоуль как единица измерения утвержден на Международном конгрессе электриков, который проходил в 1889 году. До этого времени эталоном измерения была Британская термическая единица BTU, используемая в настоящее время для определения мощности тепловых установок.

Основы сохранения и превращения

Из основ физики известно, что суммарная сила любого объекта, независимо от времени и места его пребывания, всегда остается величиной постоянной, преобразуются лишь ее постоянные составляющие (Еп) и (Ек).

Переход потенциальной энергии в кинетическую и обратно происходит при определенных условиях.

Например, если предмет не перемещается, то его кинетическая энергия равна нулю, в его состоянии будет присутствовать только потенциальная составляющая.

И наоборот, чему равна потенциальная энергия объекта, например, когда он находится на поверхности (h=0)? Конечно, она нулевая, а Е тела будет состоять только из ее составляющей Ек.

Но потенциальная энергия – это мощность движения . Стоит только системе приподняться на какую- то высоту, после чего его Еп сразу начнет увеличиваться, а Ек на такую величину, соответственно, уменьшаться. Эта закономерность просматривается в вышеуказанных формулах (1) и (2).

Для наглядности приведем пример с камнем либо мячом, которые подбрасывают. В процессе полета каждый из них обладает и как потенциальной, так и кинетической составляющей. Если одна увеличивается, то другая на такую же величину уменьшается.

Полет предметов вверх продолжается лишь до тех пор, пока хватит запаса и сил у составляющей движения Ек. Как только она иссякла, начинается падение.

А вот чему равна потенциальная энергия предметов в самой верхней точке, догадаться нетрудно, она максимальная .

При их падении происходит все наоборот. При касании с землей уровень кинетической энергии равен максимуму.

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама